A123050 Conjectured number of ordered trees on n edges for which the conjugate and transpose commute.
1, 1, 2, 2, 2, 4, 4, 4, 6, 6, 6, 8, 8, 8, 12, 12, 12, 14, 16, 16, 18, 18, 22, 24, 24, 24, 30, 30, 30, 32, 38, 38, 40, 40, 46, 48, 48, 48, 58, 58, 58, 60, 68, 68, 70, 70, 80, 82, 82, 82, 94, 94, 94, 96, 108, 108, 110, 110, 122, 124, 124, 124, 140, 140, 140, 142, 156, 156, 158
Offset: 0
Keywords
References
- D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 4: Generating All Trees--History of Combinatorial Generation, vi+120pp. ISBN 0-321-33570-8 Addison-Wesley Professional; 1ST edition (Feb 06, 2006).
Links
- D. E. Knuth, Pre-Fascicle 4a: Generating All Trees, Exercise 17, 7.2.1.6.
Crossrefs
This sequence updates the lower bound conjectured in A079438.
Programs
-
Mathematica
a[0]=a[1]=1; a[n_]/;n>=2 := 2(Floor[(n+1)/3] + Sum[Max[0,Floor[(n-(8k+2))/4]],{k,1,(n-2)/8}]); Table[a[n],{n,0,90}]
Formula
a(0)=a(1)=1, a(n) = 2(Floor[(n+1)/3] + Sum[Max[0,Floor[(n-(8k+2))/4]],{k,1,(n-2)/8}]) for n>=2. GF: 1 + x + 2x^2/((1-x)(1-x^3)) + 2x^14/((1-x)*(1-x^4)*(1-x^8))
Comments