cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123063 Theta series of lattice with Gram matrix [4,1;1,8].

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 2, 2, 0, 2, 0, 0, 0, 2, 0, 4, 0, 2, 2, 4, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 4, 0, 0, 2, 2, 0, 2, 0, 6, 2, 0, 0, 0, 2, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 6, 0, 0, 2, 0, 0, 2, 2, 4, 0, 0, 0, 0, 0, 6, 2, 2, 0, 0, 0, 4, 0, 0, 0, 6, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 2, 0, 2, 4, 0, 6, 2, 0, 2, 0
Offset: 0

Views

Author

N. J. A. Sloane, Sep 27 2006

Keywords

Comments

a(n) = number of solutions to n = 2*x^2 + x*y + 4*y^2 in integers, hence a(n) nonzero if and only if n is in A123064 and p is prime and a(p) = 2 if and only if p is in A106872. - Michael Somos, Jul 16 2011

Examples

			G.f. = 1 + 2*x^2 + 2*x^4 + 2*x^5 + 2*x^7 + 2*x^8 + 2*x^10 + 2*x^14 + 4*x^16 + 2*x^18 + ...
G.f. =  1 + 2*q^4 + 2*q^8 + 2*q^10 + 2*q^14 + 2*q^16 + 2*q^20 + 2*q^28 + 4*q^32 + ...
		

References

  • J. H. Conway, The Sensual (Quadratic) Form, M.A.A., 1997, p. 82.

Crossrefs

Programs

  • Magma
    L:=LatticeWithGram(2, [4,1,1,8] ); T := ThetaSeries(L,500); T;
    
  • Magma
    A := Basis( ModularForms( Gamma1(31), 1), 103); A[1] + 2*A[3] + 2*A[5] + 2*A[6] + 2*A[8] + 2*A[9] + 2*A[11] + 2*A[15]; /* Michael Somos, Jun 14 2014 */
    
  • Magma
    a := func ; /* Michael Somos, Jun 14 2014 */
  • Mathematica
    terms = 105; max = terms+3; s = Sum[x^(2*n^2 + n*m + 4*m^2), {n, -max, max}, {m, -max, max}] + O[x]^max; CoefficientList[s, x][[1 ;; terms]] (* Jean-François Alcover, Jul 05 2017 *)
  • PARI
    {a(n) = if( n<1, n==0, qfrep( [4, 1; 1, 8], n, 1)[n] * 2)}; /* Michael Somos, Sep 28 2006 */
    

Formula

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 + 2*u3*u2^3 - 3*u3^3*u2 - 6*u6^3*u1 + 6*u6*u2^2*u1 - 6*u3*u2^2*u1 + 3*u3*u2*u1^2 - 6*u6*u2*u1^2 - 9*u6*u3^2*u1 - 18*u6^2*u3*u2 + 18*u6*u3^2*u2 + 18*u6^2*u3*u1. - Michael Somos, Sep 28 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (31 t)) = 31^(1/2) (t/i) f(t) where q = exp(2 Pi i t). - Michael Somos, Jul 16 2011
G.f.: Sum_{n,m in Z} x^(2*n^2 + n*m + 4*m^2).