A123073 Number of ordered triples of primes (p,q,r) such that pqr = n-th 3-almost prime A014612(n).
1, 3, 3, 3, 1, 3, 6, 6, 3, 3, 3, 3, 3, 6, 3, 6, 3, 3, 6, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 1, 6, 6, 3, 3, 3, 6, 3, 6, 6, 3, 3, 6, 3, 6, 6, 3, 6, 6, 3, 3, 6, 6, 6, 3, 6, 3, 3, 3, 6, 6, 6, 3, 6, 3, 6, 3, 3, 6, 3, 6, 6, 6, 3, 6, 3, 6, 6, 3, 3, 3, 3, 1, 6, 6, 3, 6, 3, 6, 3, 6, 6, 6, 3, 3, 6, 6, 3, 6, 6, 3, 6, 3, 3, 6, 3
Offset: 1
Keywords
Programs
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot, primefactors def A123073(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) return (1,3,6)[len(primefactors(bisection(f,n,n)))-1] # Chai Wah Wu, Oct 20 2024
Extensions
More terms from T. D. Noe, Sep 29 2006
Comments