cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A222531 Primes that are arithmetic mean of 1000000 consecutive primes.

Original entry on oeis.org

1037646839, 1052209391, 1362370951, 1398573287, 1898007733, 2434995509, 2859960007, 3258342239, 3437945659, 3833019199, 3931289303, 3947997233, 4064930279, 4521550697, 4580647033, 4892254597
Offset: 1

Views

Author

Zak Seidov, Feb 24 2013

Keywords

Comments

Subsequence of A123086. Positions of primes in A123086: 41, 58, 82, 87, 102, 104, 141, 145, 187, 232, 270, 302, 323, 364, 366, 367, 380, 410, 415, 453.

Crossrefs

Cf. A123086.

Programs

  • Mathematica
    s = 7472966967499; a = 2; b = 15485863; Do[s = s - a + (b = NextPrime[b]); a = NextPrime[a]; If[PrimeQ[p = s/10^6], Print[p]], {10^8}]

A222558 Least prime p such that 2*n*p is a sum of 10^6 subsequent primes.

Original entry on oeis.org

3736971300983, 1868582442157, 1245659681423, 934275734321, 747425233469, 622762733249, 534156162737, 467093343419, 415824854441, 373728877943, 339743670103, 311538175027, 287741107327, 266994001331, 249114901193, 233613943273, 219815919913, 208214150917
Offset: 1

Views

Author

Zak Seidov, Feb 25 2013

Keywords

Comments

Indices of first primes are: 64, 89, 65, 81, 84, 13, 338, 35, 768, 105, 91, 256, 537, 186, 32, 174, 51, 1469, 519, 277, 2132, 232, 241, 310, 179, 744, 1835, 535, 787, 167, 664, 1538, 1253, 484, 620, 1450, 961, 649, 1472, 166, 480, 918, 107, 418, 173, 370, 871, 1967, 71, 534.
First primes are: 311, 461, 313, 419, 433, 41, 2273, 149, 5849, 571, 467, 1619, 3877, 1109, 131, 1033, 233, 12281, 3719, 1787, 18671, 1459, 1523, 2053, 1063, 5653, 15737, 3853, 6037, 991, 4967, 12917, 10211, 3461, 4583, 12109, 7573, 4817, 12323, 983, 3413, 7187, 587, 2887, 1031, 2531, 6763, 17047, 353, 3851.

Examples

			a(1) = 3736971300983 = (p(64)+...+p(1000063))/2 = (311 + ... + 15486871)/2.
a(2) = 1868582442157 = (p(89)+...+p(1000088))/4 = (461 + ... + 15487253)/4.
		

Crossrefs

Programs

  • Mathematica
    Do[s = 7472966967499 ; a = 2; b = 15485863; Do[s = s - a + (b = NextPrime[b]); a = NextPrime[a]; If[PrimeQ[s/m] , Print[{m, k, a, b, s/m}]; Break[]], {k, 2, 10^6}], {m, 2, 100, 2}]
Showing 1-2 of 2 results.