cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123177 Main diagonal of semiprime power sum array.

Original entry on oeis.org

2, 81, 20494, 1315073, 6115250626, 548619740497, 558551290190815706, 83010387915319808001, 718992177811939511654842, 110011000001100011001010001, 23225155720141324351494556519644062
Offset: 1

Views

Author

Jonathan Vos Post, Oct 03 2006

Keywords

Comments

Semiprime analog of A123113 Main diagonal of prime power sum array. a(n) is prime for n = 1, 4; what is the next prime value in this sequence?

Examples

			a(1) = 1 + 1^semiprime(1) = 1 + 1^4 = 2.
a(2) = 1 + 2^semiprime(1) + 2^semiprime(2) = 1 + 2^4 + 2^6 = 81.
a(3) = 1 + 3^semiprime(1) + 3^semiprime(2) + 3^semiprime(3) = 1 + 3^4 + 3^6 + 3^9 = 20494.
a(4) = 1 + 4^semiprime(1) + 4^semiprime(2) + 4^semiprime(3) + 4^semiprime(4) = 1 + 4^4 + 4^6 + 4^9 + 4^10 = 1315073 (which is prime).
a(5) = 1 + 5^semiprime(1) + 5^semiprime(2) + 5^semiprime(3) + 5^semiprime(4) + 5^semiprime(5) = 1 + 5^4 + 5^6 + 5^9 + 5^10 + 5^14 = 6115250626.
a(6) = 1 + 6^semiprime(1) + 6^semiprime(2) + 6^semiprime(3) + 6^semiprime(4) + 6^semiprime(5) + 6^semiprime(6) = 1 + 6^4 + 6^6 + 6^9 + 6^10 + 6^14 + 6^15 = 548619740497.
a(7) = 1 + 7^4 + 7^6 + 7^9 + 7^10 + 7^14 + 7^15 + 7^21 = 558551290190815706.
a(8) = 1 + 8^4 + 8^6 + 8^9 + 8^10 + 8^14 + 8^15 + 8^21 + 8^22 = 83010387915319808001.
a(9) = 1 + 9^4 + 9^6 + 9^9 + 9^10 + 9^14 + 9^15 + 9^21 + 9^22 + 9^25 = 718992177811939511654842.
a(10) = 1 + 10^4 + 10^6 + 10^9 + 10^10 + 10^14 + 10^15 + 10^21 + 10^22 + 10^25 + 10^26 = 110011000001100011001010001.
a(11) = 1 + 11^4 + 11^6 + 11^9 + 11^10 + 11^14 + 11^15 + 11^21 + 11^22 + 11^25 + 11^26 + 11^33 = 23225155720141324351494556519644062.
a(12) = 1 + 12^4 + 12^6 + 12^9 + 12^10 + 12^14 + 12^15 + 12^21 + 12^22 + 12^25 + 12^26 + 12^33 + 12^34 = 5332421525600135159678023844770734337.
a(13) = 1 + 13^4 + 13^6 + 13^9 + 13^10 + 13^14 + 13^15 + 13^21 + 13^22 + 13^25 + 13^26 + 13^33 + 13^34 + 13^35 = 1053371868623897220377558669169756037622.
		

Crossrefs

Formula

a(n) = 1 + n^4 + n^4 + n^6 + ... + n^semiprime(n) = 1 + SUM[i=1..n]n^semiprime(i) = Main diagonal A(n,n), of the infinite array A(k,n) = 1 + SUM[i=1..k]n^semiprime(i) = 1 + SUM[i=1..k]n^A001358(i). If we deem semiprime(0) = 1, the array is A(k,n) = SUM[i=0..k]n^A001358(i).