cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123212 Let S(1) = {1} and, for n > 1, let S(n) be the smallest set containing x, 2x and x^2 for each element x in S(n-1). a(n) is the sum of the elements in S(n).

Original entry on oeis.org

1, 3, 7, 31, 383, 71679, 4313284607, 18447026747376402431, 340282367000167840050178713574329810943, 115792089237316195429848086745536112650120661123018741407845920610578123980799
Offset: 1

Views

Author

John W. Layman, Oct 05 2006

Keywords

Comments

If we take the cardinality of the set S(n) instead of the sum, we get the Fibonacci numbers 1,2,3,5,8,13,21,34,... If the set mapping uses x -> x, 2x and 3x instead of x -> x, 2x, and x^2, the corresponding sequence consists of the Stirling numbers of the second kind: 1, 6, 25, 90, 301, 966, 3025, ... (A000392).

Examples

			Under the indicated set mapping we have {1} -> {1,2} -> {1,2,4} -> {1,2,4,8,16}, giving the sums a(1)=1, a(2)=3, a(3)=7, a(4)=31, etc.
		

Crossrefs

Programs

  • Maple
    s:= proc(n) option remember; `if`(n=1, 1,
          map(x-> [x, 2*x, x^2][], {s(n-1)})[])
        end:
    a:= n-> add(i, i=s(n)):
    seq(a(n), n=1..10);  # Alois P. Heinz, Jan 12 2022
  • Mathematica
    S[n_] := S[n] = If[n == 1, {1}, {#, 2#, #^2}& /@ S[n-1] // Flatten // Union];
    a[n_] := S[n] // Total;
    Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Apr 22 2022 *)
  • Python
    from itertools import chain, islice
    def A123212_gen(): # generator of terms
        s = {1}
        while True:
            yield sum(s)
            s = set(chain.from_iterable((x,2*x,x**2) for x in s))
    A123212_list = list(islice(A123212_gen(),10)) # Chai Wah Wu, Jan 12 2022