A123212 Let S(1) = {1} and, for n > 1, let S(n) be the smallest set containing x, 2x and x^2 for each element x in S(n-1). a(n) is the sum of the elements in S(n).
1, 3, 7, 31, 383, 71679, 4313284607, 18447026747376402431, 340282367000167840050178713574329810943, 115792089237316195429848086745536112650120661123018741407845920610578123980799
Offset: 1
Keywords
Examples
Under the indicated set mapping we have {1} -> {1,2} -> {1,2,4} -> {1,2,4,8,16}, giving the sums a(1)=1, a(2)=3, a(3)=7, a(4)=31, etc.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..13
Programs
-
Maple
s:= proc(n) option remember; `if`(n=1, 1, map(x-> [x, 2*x, x^2][], {s(n-1)})[]) end: a:= n-> add(i, i=s(n)): seq(a(n), n=1..10); # Alois P. Heinz, Jan 12 2022
-
Mathematica
S[n_] := S[n] = If[n == 1, {1}, {#, 2#, #^2}& /@ S[n-1] // Flatten // Union]; a[n_] := S[n] // Total; Table[a[n], {n, 1, 10}] (* Jean-François Alcover, Apr 22 2022 *)
-
Python
from itertools import chain, islice def A123212_gen(): # generator of terms s = {1} while True: yield sum(s) s = set(chain.from_iterable((x,2*x,x**2) for x in s)) A123212_list = list(islice(A123212_gen(),10)) # Chai Wah Wu, Jan 12 2022
Comments