cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123261 Multiplicative encoding of Motzkin triangle (A026300).

Original entry on oeis.org

2, 6, 450, 405168750, 10326560651880195445980468750, 17149769349660883198128523550890723880659651223306378240865271303752564539222570800781250
Offset: 1

Views

Author

Jonathan Vos Post, Nov 06 2006

Keywords

Comments

This is to A026300 "Motzkin triangle, T, read by rows; T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1)" as A007188 "Multiplicative encoding of Pascal triangle: Product p(i+1)^C(n,i)" is to A007318 "Pascal's triangle read by rows."

Examples

			a(1) = p(1)^T(1,1) = 2^1 = 2.
a(2) = p(1)^T(2,1) * p(2)^T(2,2) = 2^1 * 3^1 = 6.
a(3) = p(1)^T(3,1) * p(2)^T(3,2) * p(3)^T(3,3) = 2^1 * 3^2 * 5^2 = 450.
a(4) = 2^1 * 3^3 * 5^5 * 7^4 = 405168750.
a(5) = 2^1 * 3^4 * 5^9 * 7^12 * 11^9 = 10326560651880195445980468750.
a(6) = 2^1 * 3^5 * 5^14 * 7^25 * 11^30 * 13^21.
a(7) = 2^1 * 3^6 * 5^20 * 7^44 * 11^69 * 13^76 * 17^51.
		

Crossrefs

Cf. A000040, A007188, A007318, A009766, A124061, Motzkin numbers (A001006) are T(n, n), other columns of T include A002026, A005322, A005323.

Formula

a(n) = Product_{i=1..n} p(i+1)^T(n,i), where T(n,i), are as in Motzkin triangle (A026300), T(0,0) = T(1,0) = T(1,1) = 1; for n >= 2, T(n,0) = 1, T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k) for k = 1,2,...,n-1 and T(n,n) = T(n-1,n-2) + T(n-1,n-1).