cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123317 Smallest prime power m such that n+m is a prime number.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 1, 32, 5, 4, 3, 2, 1, 8, 5, 4, 3, 2, 1, 2, 1, 256, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 128, 5, 4, 3, 2, 1, 8, 7, 16, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 27 2006

Keywords

Examples

			n=23: 23+1=3*2^3, 23+2=5^2, 23+3=13*2, 23+2^2=3^3, 23+5=7*2^2, 23+7=5*3*2, but 23+8=31=A000040(11), therefore a(23)=8;
n=24: 24+1=5^2, 24+2=13*2, 24+3=3^3, 24+2^2=7*2^2, but 24+5=29=A000040(10), therefore a(24)=5;
the smallest occurring proper odd prime power is 9=3^2:
n=118: 118+1=17*7, 118+2=5*3*2^3, 118+3=11^2, 118+2^2=61*2, 118+5=41*3, 118+7=5^3, 118+2^3=7*2*3^2, but 118+3^2=127=A000040(31), therefore a(118)=9.
		

Crossrefs

Programs

  • Maple
    A123317 := proc(n)
        local m ;
        m :=1 ;
        if isprime(n+m) then
            return m ;
        end if;
        for m from 2 do
            if nops(numtheory[factorset](m)) = 1 then
                if isprime(n+m) then
                    return m;
                end if;
            end if;
        end do:
    end proc:
    seq(A123317(n),n=1..102) ; # R. J. Mathar, Aug 09 2019

Formula

A123318(n) = n + a(n);
a(A006093(n)) = 1; a(A040976(n)) = 2 for n>2.