A123323 Number of integer-sided triangles with maximum side n, with sides relatively prime.
1, 1, 3, 4, 8, 7, 15, 14, 21, 20, 35, 26, 48, 39, 52, 52, 80, 57, 99, 76, 102, 95, 143, 100, 160, 132, 171, 150, 224, 148, 255, 200, 250, 224, 300, 222, 360, 279, 348, 296, 440, 294, 483, 370, 444, 407, 575, 392, 609, 460, 592, 516, 728, 495, 740, 588, 738, 644
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Stackexchange, Number of triples for which gcd(a,b,c)=1 and c=n, Feb 25 2014
Programs
-
Maple
with(numtheory): a:= n-> add(mobius(n/d)*floor((d+1)^2/4), d=divisors(n)): seq(a(n), n=1..60); # Alois P. Heinz, Oct 23 2013
-
Mathematica
a[n_] := DivisorSum[n, Floor[(#+1)^2/4]*MoebiusMu[n/#]&]; Array[a, 60] (* Jean-François Alcover, Dec 07 2015 *)
-
PARI
A123323(n)=sumdiv(n,d,floor((d+1)^2/4)*moebius(n/d))
Formula
Moebius transform of b(n) = floor((n+1)^2/4).
G.f.: (G(x)+x-x^2)/2, where G(x) = Sum_{k >= 1} mobius(k)*x^k*(1+2*x^k-x^(2*k))/(1-x^k)^2/(1-x^(2*k)).
Comments