cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123330 Expansion of eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3) in powers of q.

Original entry on oeis.org

1, 2, 4, 2, 2, 0, 4, 4, 4, 2, 0, 0, 2, 4, 8, 0, 2, 0, 4, 4, 0, 4, 0, 0, 4, 2, 8, 2, 4, 0, 0, 4, 4, 0, 0, 0, 2, 4, 8, 4, 0, 0, 8, 4, 0, 0, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 8, 4, 0, 0, 0, 4, 8, 4, 2, 0, 0, 4, 0, 0, 0, 0, 4, 4, 8, 2, 4, 0, 8, 4, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, 8, 0, 4, 0, 0, 4, 4, 12, 0, 2, 0, 0, 4, 8
Offset: 0

Views

Author

Michael Somos, Sep 26 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*q + 4*q^2 + 2*q^3 + 2*q^4 + 4*q^6 + 4*q^7 + 4*q^8 + 2*q^9 + ... - _Michael Somos_, Aug 11 2009
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; s = QP[q^2]*(QP[q^3]^6/(QP[q]^2*QP[q^6]^3)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, -(-1)^d * kronecker( -3, d)))}
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3), n))}
    
  • Sage
    A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 2*A[1] # Michael Somos, Sep 27 2013

Formula

Expansion of c(q)^2 / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
Expansion of phi(-x^3)^3 / phi(-x) where phi() is a Ramanujan theta function.
a(n) = 2*b(n) where b(n) is multiplicative and b(2^e) = (1 - 3*(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 6 sequence [ 2, 1, -4, 1, 2, -2, ...].
Moebius transform is period 6 sequence [ 2, 2, 0, -2, -2, 0, ...].
a(n) = 2 * A123331(n) if n>0. (-1)^n * a(n) = A113973(n).
G.f.: Product_{k>0} (1 + x^k)/(1 - x^k) * ((1 - x^(3*k)) / (1 + x^(3*k)))^3.
G.f.: 1 + 2 * Sum_{k>0} x^k / (1 - x^k + x^(2*k)) = theta_3(-x^3)^3 / theta_3(-x).
From Michael Somos, Aug 11 2009: (Start)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u - v)^2 - 2 * u * w * (v - w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107760.
a(4*n) = a(3*n) = a(n). a(12*n + 10) = a(6*n + 5) = 0.
a(2*n + 1) = 2 * A033762(n). a(3*n + 1) = 2 * A033687(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 3) = 2 * A112605(n). a(6*n + 1) = 2 * A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 4 * A121361(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Nov 14 2023