A123330 Expansion of eta(q^2) * eta(q^3)^6 / (eta(q)^2 * eta(q^6)^3) in powers of q.
1, 2, 4, 2, 2, 0, 4, 4, 4, 2, 0, 0, 2, 4, 8, 0, 2, 0, 4, 4, 0, 4, 0, 0, 4, 2, 8, 2, 4, 0, 0, 4, 4, 0, 0, 0, 2, 4, 8, 4, 0, 0, 8, 4, 0, 0, 0, 0, 2, 6, 4, 0, 4, 0, 4, 0, 8, 4, 0, 0, 0, 4, 8, 4, 2, 0, 0, 4, 0, 0, 0, 0, 4, 4, 8, 2, 4, 0, 8, 4, 0, 2, 0, 0, 4, 0, 8, 0, 0, 0, 0, 8, 0, 4, 0, 0, 4, 4, 12, 0, 2, 0, 0, 4, 8
Offset: 0
Examples
G.f. = 1 + 2*q + 4*q^2 + 2*q^3 + 2*q^4 + 4*q^6 + 4*q^7 + 4*q^8 + 2*q^9 + ... - _Michael Somos_, Aug 11 2009
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions, 2019.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
QP = QPochhammer; s = QP[q^2]*(QP[q^3]^6/(QP[q]^2*QP[q^6]^3)) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015 *)
-
PARI
{a(n) = if( n<1, n==0, 2 * sumdiv(n, d, -(-1)^d * kronecker( -3, d)))}
-
PARI
{a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^6 / (eta(x + A)^2 * eta(x^6 + A)^3), n))}
-
Sage
A = ModularForms( Gamma1(6), 1, prec=90).basis(); A[0] + 2*A[1] # Michael Somos, Sep 27 2013
Formula
Expansion of c(q)^2 / (3 * c(q^2)) in powers of q where c() is a cubic AGM theta function.
Expansion of phi(-x^3)^3 / phi(-x) where phi() is a Ramanujan theta function.
a(n) = 2*b(n) where b(n) is multiplicative and b(2^e) = (1 - 3*(-1)^e) / 2 if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e) / 2 if p == 5 (mod 6).
Euler transform of period 6 sequence [ 2, 1, -4, 1, 2, -2, ...].
Moebius transform is period 6 sequence [ 2, 2, 0, -2, -2, 0, ...].
G.f.: Product_{k>0} (1 + x^k)/(1 - x^k) * ((1 - x^(3*k)) / (1 + x^(3*k)))^3.
G.f.: 1 + 2 * Sum_{k>0} x^k / (1 - x^k + x^(2*k)) = theta_3(-x^3)^3 / theta_3(-x).
From Michael Somos, Aug 11 2009: (Start)
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v * (u - v)^2 - 2 * u * w * (v - w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (16/3)^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A107760.
a(4*n) = a(3*n) = a(n). a(12*n + 10) = a(6*n + 5) = 0.
a(2*n + 1) = 2 * A033762(n). a(3*n + 1) = 2 * A033687(n). a(4*n + 1) = 2 * A112604(n). a(4*n + 3) = 2 * A112605(n). a(6*n + 1) = 2 * A097195(n). a(12*n + 1) = A123884(n). a(12*n + 7) = 4 * A121361(n). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4*Pi/(3*sqrt(3)) = 2.418399... (A275486). - Amiram Eldar, Nov 14 2023
Comments