cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123331 Expansion of (c(q)^2/(3c(q^2))-1)/2 in powers of q where c(q) is a cubic AGM function.

Original entry on oeis.org

1, 2, 1, 1, 0, 2, 2, 2, 1, 0, 0, 1, 2, 4, 0, 1, 0, 2, 2, 0, 2, 0, 0, 2, 1, 4, 1, 2, 0, 0, 2, 2, 0, 0, 0, 1, 2, 4, 2, 0, 0, 4, 2, 0, 0, 0, 0, 1, 3, 2, 0, 2, 0, 2, 0, 4, 2, 0, 0, 0, 2, 4, 2, 1, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 1, 2, 0, 4, 2, 0, 1, 0, 0, 2, 0, 4, 0, 0, 0, 0, 4, 0, 2, 0, 0, 2, 2, 6, 0, 1, 0, 0, 2, 4, 0
Offset: 1

Views

Author

Michael Somos, Sep 26 2006

Keywords

Crossrefs

Cf. A123330(n)=2*a(n) if n>0. A113974(n)=-(-1)^n*a(n).
Cf. A248897.

Programs

  • Mathematica
    f[p_, e_] := If[Mod[p, 6] == 1, e+1, (1+(-1)^e)/2]; f[2, e_] := (3-(-1)^e)/2; f[3, e_] := 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    {a(n)=if(n<1, 0, -sumdiv(n, d, (-1)^d*kronecker(-3,d)))}
    
  • PARI
    {a(n)=local(A, p, e); if(n<1, 0, A=factor(n); prod(k=1, matsize(A)[1], if(p=A[k, 1], e=A[k, 2]; if(p==2, (3-(-1)^e)/2, if(p==3, 1, if(p%6==1, e+1, !(e%2)))))))}
    
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^3+A)^6/ eta(x+A)^2/eta(x^6+A)^3-1)/2, n))}

Formula

Moebius transform is period 6 sequence [ 1, 1, 0, -1, -1, 0, ...].
a(n) is multiplicative with a(2^e) = (3-(-1)^e)/2, a(3^e) = 1, a(p^e) = e+1 if p == 1 (mod 6), a(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6).
a(3n) = a(4n) = a(n). a(6n+5) = 0.
G.f.: Sum_{k>0} x^k/(1-x^k+x^(2k)) = (theta_3(-q^3)^3/theta_3(-q) - 1)/2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/(3*sqrt(3)) = 1.209199... (A248897). - Amiram Eldar, Nov 14 2023