A123999
Number of ordered ways of writing n as a sum of 4 squares of nonnegative numbers less than 4.
Original entry on oeis.org
1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, 12, 8, 16, 24, 12, 1, 12, 18, 12, 6, 4, 12, 12, 0, 0, 6, 4, 4, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
a(0) = 1 because of the unique sum 0 = 0^2 + 0^2 + 0^2 + 0^2.
a(1) = 4 because of the 4 permutations 1 = 0^2 + 0^2 + 0^2 + 1^2 = 0^2 + 0^2 + 1^2 + 0^2 = 0^2 + 1^2 + 0^2 + 0^2 = 1^2 + 0^2 + 0^2 + 0^2.
a(4) = 5 because of 4 = 1^2 + 1^2 + 1^2 + 1^2 plus the 4 permutations of 4 = 0^2 + 0^2 + 0^2 + 2^2.
a(16) = 1 because 16 = 2^2 + 2^2 + 2^2 + 2^2.
-
a[n_] := Total[ Length /@ Permutations /@ IntegerPartitions[n, {4}, Range[0, 3]^2]]; a /@ Range[0, 72] (* Giovanni Resta, Jun 13 2016 *)
Corrected typo in third example Dave Zobel (dzobel(AT)alumni.caltech.edu), Mar 07 2009
A124054
Array(d,n) = number of ordered ways to write n as the sum of d squares less than d, read by rows, through last nonzero value per row.
Original entry on oeis.org
1, 1, 2, 1, 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1, 1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, 12, 8, 16, 24, 12, 1, 12, 18, 12, 6, 4, 12, 12, 0, 0, 6, 4, 4, 0, 0, 4, 0, 0, 0, 0, 1, 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, 50, 40, 30, 45, 70, 60, 30, 55, 100, 80, 56
Offset: 1
A(1,n) = 1 because the unique ordered way to write 1 as the sum of 0 squares less than 0 is the null set {}.
a(2,n) = 1, 2, 1 = Card{0=0^2+0^2}; Card{1=0^2+1^2,1=1^2+0^2}; Card{2=1^2+1^2}.
a(3,n) = 1, 3, 3, 1, 3, 6, 3, 0, 3, 3, 0, 0, 1.
a(4,n) = 1, 4, 6, 4, 5, 12, 12, 4, 6, 16, 18, ... = A123999.
a(5,n) = 1, 5, 10, 10, 10, 21, 30, 20, 15, 35, ... = A123337.
a(6,n) = 1, 6, 15, 20, 21, 36, 61, 60, 45, 72, ...
a(7,n) = 1, 7, 21, 35, 42, 63, 112, 141, 126, 154, ...
a(8,n) = 1, 8, 28, 56, 78, 112, 196, 288, 309, 344, ...
a(9,n) = 1, 9, 36, 84, 135, 198, 336, 540, 675, 766, ...
a(10,n) = 1, 10, 45, 120, 220, 342, 570, 960, 1350, 1640, ...
-
cntper[v_] := Length[v]!/Times @@ ((Last /@ Tally[v])!); sqq[d_, n_] := Total[ cntper /@ IntegerPartitions[n, {d}, Range[0, d - 1]^2]]; Flatten[ Table[ sqq[d, #] & /@ Range[0, d (d - 1)^2], {d, 1, 6}]] (* Giovanni Resta, Jun 16 2016 *)
Showing 1-2 of 2 results.
Comments