cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123345 Numbers containing all divisors in their binary representation.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 31, 32, 34, 37, 38, 40, 41, 43, 44, 46, 47, 48, 52, 53, 55, 56, 58, 59, 61, 62, 64, 67, 68, 71, 73, 74, 76, 79, 80, 82, 83, 86, 88, 89, 92, 94, 96, 97, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 12 2006

Keywords

Crossrefs

Complement of A093642. Different from A093641.
Cf. A000040 (subsequence), A027750, A218388.

Programs

  • Haskell
    import Data.List (unfoldr, isInfixOf)
    a123345 n = a123345_list !! (n-1)
    a123345_list = filter
      (\x -> all (`isInfixOf` b x) $ map b $ a027750_row x) [1..] where
      b = unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2)
    -- Reinhard Zumkeller, Oct 27 2012
    
  • Mathematica
    q[n_] := AllTrue[Divisors[n], StringContainsQ[IntegerString[n, 2], IntegerString[#, 2]] &]; Select[Range[100], q] (* Amiram Eldar, Jun 05 2022 *)
  • Python
    from sympy import divisors
    def ok(n):
        b = bin(n)[2:]
        return n and all(bin(d)[2:] in b for d in divisors(n, generator=True))
    print([k for k in range(119) if ok(k)]) # Michael S. Branicky, Jun 05 2022