A123361 Triangle read by rows: T(n,k) = coefficient of x^k in the polynomial p[n,x] defined by p[0,x]=1, p[1,x]=1+x and p[n,x]=(1+x)(2-x)(3-x)...(n-x) for n >= 2 (0 <= k <= n).
1, 1, 1, 2, 1, -1, 6, 1, -4, 1, 24, -2, -17, 8, -1, 120, -34, -83, 57, -13, 1, 720, -324, -464, 425, -135, 19, -1, 5040, -2988, -2924, 3439, -1370, 268, -26, 1, 40320, -28944, -20404, 30436, -14399, 3514, -476, 34, -1, 362880, -300816, -154692, 294328, -160027, 46025, -7798, 782, -43, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 1, -1; 6, 1, -4, 1; 24, -2, -17, 8, -1; 120, -34, -83, 57, -13, 1; 720, -324, -464, 425, -135, 19, -1; 5040, -2988, -2924, 3439, -1370, 268, -26, 1;
References
- Chang and Sederberg, Over and Over Again, MAA, 1997, page 209 (Moving Averages).
Links
- G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
Crossrefs
Cf. A008275.
Programs
-
Maple
p[0]:=1: p[1]:=1+x: for n from 2 to 10 do p[n]:=sort(expand((n-x)*p[n-1])) od: for n from 0 to 10 do seq(coeff(p[n],x,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
p[ -1, x] = 1; p[0, x] = x + 1; p[k_, x_] := p[k, x] = (-x + k + 1)*p[k - 1, x] w = Table[CoefficientList[p[n, x], x], {n, -1, 10}]; Flatten[w]
Extensions
Edited by N. J. A. Sloane, Nov 24 2006, Jun 17 2007
Comments