A123474 Triangle read by rows: T(n,k) = number of labeled bicolored nonseparable graphs with k points in one color class and n-k points in the other class. The classes are interchangeable if k = n-k. Here n >= 2, k=1..n-1.
1, 0, 0, 0, 3, 0, 0, 10, 10, 0, 0, 15, 340, 15, 0, 0, 21, 6965, 6965, 21, 0, 0, 28, 51296, 246295, 51296, 28, 0, 0, 36, 326676, 14750946, 14750946, 326676, 36, 0, 0, 45, 1917840, 322476210, 796058676, 322476210, 1917840, 45, 0, 0, 55, 10683255
Offset: 2
Examples
Triangle begins: 1; 0, 0; 0, 3, 0; 0, 10, 10, 0; 0, 15, 340, 15, 0; 0, 21, 6965, 6965, 21, 0; 0, 28, 51296, 246295, 51296, 28, 0; ... Formatted as an array: ========================================================== m/n | 1 2 3 4 5 6 ----+----------------------------------------------------- 1 | 1 0 0 0 0 0 ... 2 | 0 3 10 15 21 28 ... 3 | 0 10 340 6965 51296 326676 ... 4 | 0 15 6965 246295 14750946 322476210 ... 5 | 0 21 51296 14750946 796058676 105725374062 ... 6 | 0 28 326676 322476210 105725374062 9736032295374 ... ...
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows; first 24 rows from R. W. Robinson)
- F. Harary and R. W. Robinson, Labeled bipartite blocks, Canad. J. Math., 31 (1979), 60-68.
Formula
From Andrew Howroyd, Jan 03 2021: (Start)
T(n,k) = f(n-2*k) * binomial(n,k) * A123301(n, k) where f(0) = 1/2 and 1 otherwise.
A004100(n) = Sum_{k=0..floor(n/2)} T(n,k). (End)