cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123486 Riordan array (1/(1-2*x), x/(1-4*x^2)).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 8, 2, 1, 16, 16, 12, 2, 1, 32, 48, 24, 16, 2, 1, 64, 96, 96, 32, 20, 2, 1, 128, 256, 192, 160, 40, 24, 2, 1, 256, 512, 640, 320, 240, 48, 28, 2, 1, 512, 1280, 1280, 1280, 480, 336, 56, 32, 2, 1, 1024, 2560, 3840, 2560, 2240, 672, 448, 64, 36, 2, 1
Offset: 0

Views

Author

Paul Barry, Sep 30 2006

Keywords

Comments

Row sums are A026581. Diagonal sums are A026383.

Examples

			Number triangle begins
1;
2, 1;
4, 2, 1;
8, 8, 2, 1;
16, 16, 12, 2, 1;
32, 48, 24, 16, 2, 1;
		

Programs

  • Mathematica
    Table[Binomial[Floor[(n + k)/2], k]*2^(n - k), {n, 0, 49}, {k, 0,
       n}] // Flatten (* G. C. Greubel, Oct 13 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(floor((n+k)/2),k)*2^(n-k), ", "))) \\ G. C. Greubel, Oct 13 2017

Formula

Number triangle T(n,k) = C(floor((n+k)/2), k) * 2^(n-k).
T(n,k) = T(n-1,k-1) + 4*T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 20 2014

Extensions

Terms a(46) onward added by G. C. Greubel, Oct 14 2017