cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A153248 Number of fleeing trees computed for Catalan bijection A123494.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 0, 2, 1, 3, 1, 0, 2, 2, 3, 1, 3, 3, 1, 1, 0, 2, 2, 4, 1, 0, 2, 3, 3, 1, 3, 3, 2, 1, 1, 3, 2, 4, 1, 0, 2, 3, 2, 2, 4, 4, 1, 1, 0, 2, 3, 2, 2, 0, 3, 1, 2, 3, 3, 2, 3, 1, 1, 3, 2, 5, 1, 0, 2, 4, 3, 1, 3, 3, 3, 1, 2, 4, 2, 4, 1, 0, 2, 3, 2, 2, 4, 4, 2, 1, 1, 3, 3, 2, 2, 0, 4, 2, 2, 4, 4, 2
Offset: 0

Views

Author

Antti Karttunen, Dec 22 2008

Keywords

Comments

See comments at A153247.

A122202 Signature permutations of KROF-transformations of non-recursive Catalan automorphisms in table A089840.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 8, 3, 2, 1, 0, 6, 7, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 5, 5, 4, 5, 3, 2, 1, 0, 9, 4, 7, 6, 6, 6, 3, 2, 1, 0, 10, 22, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 21, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 14, 13, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 18, 10, 12, 13
Offset: 0

Views

Author

Antti Karttunen, Sep 01 2006

Keywords

Comments

Row n is the signature permutation of the Catalan automorphism which is obtained from the n-th nonrecursive automorphism in the table A089840 with the recursion scheme "KROF". In this recursion scheme the algorithm first recurses down to the both branches, before the given automorphism is applied at the root of binary tree. I.e., this corresponds to the post-order (postfix) traversal of a Catalan structure, when it is interpreted as a binary tree. The associated Scheme-procedures KROF and !KROF can be used to obtain such a transformed automorphism from any constructively or destructively implemented automorphism. Each row occurs only once in this table. Inverses of these permutations can be found in table A122201.
The recursion scheme KROF is equivalent to a composition of recursion schemes ENIPS (described in A122204) and NEPEED (described in A122284), i.e., KROF(f) = NEPEED(ENIPS(f)) holds for all Catalan automorphisms f. Because of the "universal property of folds", these recursion schemes have well-defined inverses, that is, they are bijective mappings on the set of all Catalan automorphisms. Specifically, if g = KROF(f), then (f s) = (g (cons (g^{-1} (car s)) (g^{-1} (cdr s)))), that is, to obtain an automorphism f which gives g when subjected to recursion scheme KROF, we compose g with its own inverse applied to the car- and cdr-branches of a S-expression (i.e., the left and right subtrees in the context of binary trees). This implies that for any nonrecursive automorphism f of the table A089840, KROF^{-1}(f) is also in A089840, which in turn implies that all rows of table A089840 can be found also in table A122202 (e.g., row 1 of A089840 (A069770) occurs here as row 1654720) and furthermore, the table A122290 contains the rows of both tables, A122202 and A089840 as its subsets. Similar notes apply to recursion scheme FORK described in A122201. - Antti Karttunen, May 25 2007

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A057163, 2: A057512, 3: A122342, 4: A122348, 5: A122346, 6: A122344, 7: A122350, 8: A082326, 9: A122294, 10: A122292, 11: A082359, 12: A074683, 13: A122358, 14: A122360, 15: A122302, 16: A122362, 17: A074682, 18: A122296, 19: A122298, 20: A122356, 21: A122354. Other rows: row 4069: A082355, row 65518: A082357, row 79361: A123494.
Row 1654720: A069770.

A127302 Matula-Goebel signatures for plane binary trees encoded by A014486.

Original entry on oeis.org

1, 4, 14, 14, 86, 86, 49, 86, 86, 886, 886, 454, 886, 886, 301, 301, 301, 886, 886, 301, 454, 886, 886, 13766, 13766, 6418, 13766, 13766, 3986, 3986, 3986, 13766, 13766, 3986, 6418, 13766, 13766, 3101, 3101, 1589, 3101, 3101, 1849, 1849, 3101, 13766
Offset: 0

Views

Author

Antti Karttunen, Jan 16 2007

Keywords

Comments

This sequence maps A000108(n) oriented (plane) rooted binary trees encoded in range [A014137(n-1)..A014138(n-1)] of A014486 to A001190(n+1) non-oriented rooted binary trees, encoded by their Matula-Goebel numbers (when viewed as a subset of non-oriented rooted general trees). See also the comments at A127301.
If the signature-permutation of a Catalan automorphism SP satisfies the condition A127302(SP(n)) = A127302(n) for all n, then it preserves the non-oriented form of a binary tree. Examples of such automorphisms include A069770, A057163, A122351, A069767/A069768, A073286-A073289, A089854, A089859/A089863, A089864, A122282, A123492-A123494, A123715/A123716, A127377-A127380, A127387 and A127388.
A153835 divides natural numbers to same equivalence classes, i.e. a(i) = a(j) <=> A153835(i) = A153835(j) - Antti Karttunen, Jan 03 2013

Examples

			A001190(n+1) distinct values occur each range [A014137(n-1)..A014138(n-1)]. As an example, terms A014486(4..8) encode the following five plane binary trees:
........\/.....\/.................\/.....\/...
.......\/.......\/.....\/.\/.....\/.......\/..
......\/.......\/.......\_/.......\/.......\/.
n=.....4........5........6........7........8..
The trees in positions 4, 5, 7 and 8 all produce Matula-Goebel number A000040(1)*A000040(A000040(1)*A000040(A000040(1)*A000040(1))) = 2*A000040(2*A000040(2*2)) = 2*A000040(14) = 2*43 = 86, as they are just different planar representations of the one and same non-oriented tree. The tree in position 6 produces Matula-Goebel number A000040(A000040(1)*A000040(1)) * A000040(A000040(1)*A000040(1)) = A000040(2*2) * A000040(2*2) = 7*7 = 49. Thus a(4..8) = 86,86,49,86,86.
		

Crossrefs

Formula

a(n) = A127301(A057123(n)).
Can be also computed directly as a fold, see the Scheme-program. - Antti Karttunen, Jan 03 2013

A123492 An involution of nonnegative integers: signature permutation of a nonrecursive Catalan automorphism which swaps the sides of a binary tree if the left subtree of either the left or right hand side toplevel subtree is not empty and otherwise keeps the binary tree intact.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 6, 7, 5, 9, 10, 20, 21, 22, 14, 19, 16, 17, 18, 15, 11, 12, 13, 23, 24, 25, 26, 27, 54, 55, 57, 58, 59, 61, 62, 63, 64, 37, 38, 53, 56, 60, 42, 51, 44, 45, 46, 47, 48, 49, 50, 43, 52, 39, 28, 29, 40, 30, 31, 32, 41, 33, 34, 35, 36, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2006

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C and D refer to arbitrary subtrees located on those nodes.)
.....B...C.....B...C...........A...B.............A...B...
......\./.......\./.............\./...............\./....
.......x...D.....x...D...........x...C.............x...C.
........\./.......\./.............\./...............\./..
.....A...x...-->...x...A...........x...D...-->...D...x...
......\./...........\./.............\./...........\./....
.......x.............x...............x.............x.....

Crossrefs

Row 79361 of A089840. Used to construct A123493, A123494, A123715 and A123716. Cf. A069770.

A123493 Signature permutation of a Catalan automorphism: row 79361 of table A122201.

Original entry on oeis.org

0, 1, 2, 3, 4, 8, 6, 7, 5, 9, 13, 20, 21, 18, 14, 19, 16, 17, 22, 15, 11, 12, 10, 23, 27, 34, 35, 32, 54, 61, 57, 58, 64, 55, 48, 49, 46, 37, 41, 53, 56, 47, 42, 51, 44, 45, 50, 60, 62, 63, 59, 43, 52, 39, 28, 33, 40, 30, 31, 36, 38, 29, 25, 26, 24, 65, 69, 76, 77, 74, 96
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2006

Keywords

Comments

This is the signature-permutation of Catalan automorphism which is derived from nonrecursive Catalan automorphism *A123492 with the recursion schema FORK (defined in A122201). See further comments at A123494.

Crossrefs

Inverse: A123494. Row 79361 of A122201.

A153246 Number of fleeing trees computed for Catalan bijection A057164.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 0, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Antti Karttunen, Dec 22 2008

Keywords

Comments

A "fleeing tree" sequence computed for Catalan bijection CatBij gives for each binary tree A014486(n) the number of cases where, when a new V-node (a bud) is inserted into one of the A072643(n)+1 possible leaves of that tree, it follows that (CatBij tree) is not a subtree of (CatBij tree-with-bud-inserted). I.e., for each tree A014486(n), we compute Sum_{i=0}^A072643(n) (1 if catbij(n) is a subtree of catbij(A153250bi(n,i)), 0 otherwise). Here A153250 gives the bud-inserting operation. Note that for any Catalan Bijection, which is an image of "psi" isomorphism (see A153141) from the Automorphism Group of infinite binary trees, the result will be A000004, the zero-sequence. To satisfy that condition, CatBij should at least satisfy A127302(CatBij(n)) = A127302(n) for all n (clearly A057164 does not satisfy that, so we got nonzero terms here). However, that is just a necessary but not a sufficient condition. For example, A123493 & A123494 satisfy it, but they still produce nonzero sequences: A153247, A153248.

Crossrefs

Showing 1-6 of 6 results.