A123508 1-dimensional quasiperiodic heptagonal sequence.
1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3
Offset: 0
Keywords
Examples
1=>3; 3=>1,3,2; then the previous subset generates 3,1,3,2,2,3. The resulting subsets are (1), (1,3,2), (3,1,3,2,2,3)...which we combine to form a continuous sequence.
Links
- P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31, p. 29.
Crossrefs
Cf. A077998.
Formula
Let a(n) = 1; then iterate using the rules 1=>3; 2=>2,3; 3=>1,3,2; Append each successive iterate to the right, creating an infinite string.
Comments