cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123513 Triangle read by rows: T(n,k) is the number of permutations of [n] having k small descents (n >= 1; 0 <= k <= n-1). A small descent in a permutation (x_1,x_2,...,x_n) is a position i such that x_i - x_(i+1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 11, 9, 3, 1, 53, 44, 18, 4, 1, 309, 265, 110, 30, 5, 1, 2119, 1854, 795, 220, 45, 6, 1, 16687, 14833, 6489, 1855, 385, 63, 7, 1, 148329, 133496, 59332, 17304, 3710, 616, 84, 8, 1, 1468457, 1334961, 600732, 177996, 38934, 6678, 924, 108, 9, 1
Offset: 1

Views

Author

Emeric Deutsch, Oct 02 2006

Keywords

Comments

This triangle is essentially A010027 (ascending pairs in permutations of [n]) with a different offset. The same triangle gives the number of permutations of [n] having k unit ascents (n >= 1; 0 <= k <= n-1). For permutations sorted by number of non-unitary (i.e., > 1) descents (also called "big" descents), see A120434. For permutations sorted by number of unitary moves (i.e., ascent or descent), see A001100. - Olivier Gérard, Oct 09 2007
With offsets n=0 (k=0) this is a binomial convolution triangle, a Sheffer triangle of the Appell type: ((exp(-x))/(1-x)^2),x). See the e.g.f. given below.

Examples

			Triangle starts:
     1;
     1,    1;
     3,    2,   1;
    11,    9,   3,   1;
    53,   44,  18,   4,  1;
   309,  265, 110,  30,  5, 1;
  2119, 1854, 795, 220, 45, 6, 1;
  ...
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the unit descents are shown by a /).
T(4,2)=3 because we have 14/3/2, 2/14/3 and 3/2/14 (the small descents are shown by a /).
		

References

  • Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, p. 179, Table 5.4 for S_{n,k} (without row n=1 and column k=0).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263 (Table 7.5.1).

Crossrefs

Cf. A010027 (mirror image), A120434, A001100.

Programs

  • Maple
    G:=exp(-x+t*x)/(1-x)^2: Gser:=simplify(series(G,x=0,15)): for n from 0 to 10 do P[n+1]:=sort(n!*coeff(Gser,x,n)) od: for n from 1 to 11 do seq(coeff(P[n],t,k),k=0..n-1) od; # yields sequence in triangular form
  • Mathematica
    Needs["Combinatorica`"];
    Table[Map[Count[#,1]&,Map[Differences,Permutations[n]]]//Distribution,{n,1,10}]//Grid
    (* Geoffrey Critzer, Dec 15 2012 *)
    T[n_, k_] := (n-1)! SeriesCoefficient[Exp[-x + t x]/(1-x)^2, {x, 0, n-1}, {t, 0, k}];
    Table[T[n, k], {n, 1, 10}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Sep 25 2019 *)
    T[1,1]:=1;T[0,1]:=0;T[n_,1]:=T[n,1]=(n-1)T[n-1,1]+(n-2)T[n-2,1];T[n_,k_]:=T[n,k]=T[n-1, k-1](n-1)/(k-1);Flatten@Table[T[n,k],{n,1,10},{k,1,n}] (* Oliver Seipel, Dec 01 2024 *)

Formula

T(n,1) = A000255(n-1).
T(n,2) = A000166(n-1) (the derangement numbers).
T(n,3) = A000274(n).
T(n,4) = A000313(n).
T(n,5) = A001260(n);
G.f.: exp(-x+tx)/(1-x)^2 (if offset is 0), i.e., T(n,k)=(n-1)!*[x^(n-1) t^k]exp(-x+tx)/(1-x)^2.
T(n,k) = binomial(n-1,k)*A000255(n-1), n-1 >= k >= 0, else 0.