cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123518 Number of dumbbells in all possible arrangements of dumbbells on a 2 X n rectangular array of compartments.

Original entry on oeis.org

1, 8, 38, 166, 671, 2602, 9792, 36068, 130697, 467556, 1655406, 5811290, 20255279, 70172502, 241839184, 829685064, 2835099649, 9653650752, 32768012102, 110913651342, 374469646511, 1261386990850, 4240037471152, 14225209349036
Offset: 1

Views

Author

Emeric Deutsch, Oct 16 2006

Keywords

Examples

			a(2)=8 because in a 2 X 2 array of compartments, numbered clockwise starting from the NW one, we have 7 (=A030186(2)) possible arrangements of dumbbells: [ ], [14], [23], [12], [34], [14,23] and [12,34] (ij indicates a dumbbell placed in the compartments i and j); these contain altogether 8 dumbbells.
		

Crossrefs

Programs

  • GAP
    a:=[1,8,38,166,671,2602];; for n in [7..30] do a[n]:=6*a[n-1] -7*a[n-2]-8*a[n-3]+5*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 )); // G. C. Greubel, Oct 28 2019
    
  • Maple
    G:=z*(1+2*z-3*z^2+2*z^3)/(1-3*z-z^2+z^3)^2: Gser:=series(G,z=0,30): seq(coeff(Gser,z,n),n=1..27);
  • Mathematica
    LinearRecurrence[{6,-7,-8,5,2,-1}, {1,8,38,166,671,2602}, 30] (* G. C. Greubel, Oct 28 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec(x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2) \\ G. C. Greubel, Oct 28 2019
    
  • Sage
    def A123518_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 ).list()
    a=A123518_list(30); a[1:] # G. C. Greubel, Oct 28 2019
    

Formula

a(n) = Sum_{k=0..n} k*A046741(n,k).
G.f.: x*(1 + 2*x - 3*x^2 + 2*x^3)/(1 - 3*x - x^2 + x^3)^2.