A123542 Triangular array T(n,k) giving number of 3-connected graphs with n labeled nodes and k edges (n >= 4, ceiling(3*n/2) <= k <= n(n-1)/2).
1, 15, 10, 1, 70, 492, 690, 395, 105, 15, 1, 5040, 28595, 58905, 63990, 42392, 18732, 5880, 1330, 210, 21, 1, 16800, 442680, 2485920, 6629056, 10684723, 11716068, 9409806, 5824980, 2872317, 1147576, 373156, 98112, 20475, 3276
Offset: 4
Examples
Triangle begins: n = 4 k = 6 : 1 Total( 4) = 1 n = 5 k = 8 : 15 k = 9 : 10 k = 10 : 1 Total( 5) = 26 n = 6 k = 9 : 70 k = 10 : 492 k = 11 : 690 k = 12 : 395 k = 13 : 105 k = 14 : 15 k = 15 : 1 Total( 6) = 1768 n = 7 k = 11 : 5040 k = 12 : 28595 k = 13 : 58905 k = 14 : 63990 k = 15 : 42392 k = 16 : 18732 k = 17 : 5880 k = 18 : 1330 k = 19 : 210 k = 20 : 21 k = 21 : 1 Total( 7) = 225096
References
- R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
Links
- R. W. Robinson, Rows 4 through 15, flattened (row 15 is incomplete).
- T. R. S. Walsh, Counting labeled three-connected and homeomorphically irreducible two-connected graphs, J. Combin. Theory Ser. B 32 (1982), no. 1, 1-11, Table 1.