cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123544 Number of connected labeled 2-regular relations of order n.

Original entry on oeis.org

0, 0, 1, 6, 87, 1980, 66270, 3050460, 184716630, 14231775600, 1359481407480, 157694893448400, 21835679256606600, 3557942554594428000, 673941365091485290800, 146851484638349504613600
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2006

Keywords

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1982.

Crossrefs

Connected version of A001499. Unlabeled version is A005642.
Cf. A123543.

Programs

  • Mathematica
    m = 16;
    a1499[n_] := (n - 1)*n!*Gamma[n - 1/2]*Hypergeometric1F1[2 - n, 3/2 - n, -1/2]/Sqrt[Pi];
    egf = Log[1 + Sum[a1499[k] x^k/k!, {k, 1, m}]];
    CoefficientList[egf + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Aug 26 2019 *)
  • PARI
    seq(n)={Vec(serlaplace(log(serlaplace(exp(-x/2 + O(x*x^n))/sqrt(1-x + O(x*x^n))))), -(n+1))}; \\ Andrew Howroyd, Sep 09 2018

Formula

E.g.f.: log(1 + Sum_{k>0} A001499(k)*x^k/k!). - Andrew Howroyd, Sep 09 2018