cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123548 Triangle read by rows: T(n,k) = number of unlabeled bicolored graphs having 2n nodes and k edges, which are invariant when the two color classes are interchanged. Here n >= 0, 0 <= k <= n^2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 1, 1, 1, 1, 2, 4, 5, 7, 8, 9, 8, 7, 5, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 9, 14, 22, 29, 33, 37, 43, 43, 37, 33, 29, 22, 14, 9, 6, 4, 2, 1, 1, 1, 1, 1, 1, 2, 4, 6, 10, 16, 29, 46, 69, 99, 141, 183, 230, 277, 319, 342, 352, 342, 319, 277, 230, 183, 141, 99, 69, 46, 29, 16, 10, 6, 4, 2, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 14 2006

Keywords

Examples

			Triangle begins:
n = 0
k = 0 : 1
************************ total ( 2n = 0) = 1
n = 1
k = 0 : 1
k = 1 : 1
************************ total ( 2n = 2) = 2
n = 2
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 1
k = 4 : 1
************************ total ( 2n = 4) = 5
n = 3
k = 0 : 1
k = 1 : 1
k = 2 : 1
k = 3 : 2
k = 4 : 3
k = 5 : 3
k = 6 : 2
k = 7 : 1
k = 8 : 1
k = 9 : 1
************************ total ( 2n = 6) = 16
		

References

  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1978.

Crossrefs

Row sums give A122082.
Cf. A008406.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(2*v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(2*c)^(c\2)*if(c%2, t(c), 1))}
    Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s/n!)}
    { for(n=0, 6, print(Row(n))) } \\ Andrew Howroyd, Mar 08 2020