A143667 Digits of the infinite Fibonacci word A003849 grouped 2 by 2 and interpreted as a binary value.
1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 0, 2, 2, 1, 1, 0
Offset: 1
Examples
a(1) = 1 because the infinite Fibonacci word starts with "01", a(2) = 0 because it continues with "00", and so on.
References
- M. Lothaire, Combinatorics on words, Cambridge University Press.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- J.-P. Allouche, M. Mendès France, and G. Skordev, Non-intersectivity of Paperfolding Dragon Curves and of Curves Generated by Automatic Sequences, INTEGERS, Electronic Journal of Combinatorial Number Theory, vol. 18A, Article #A2, 2018. Mentions this sequence.
- Wieb Bosma and Henk Don, Constructing Morphisms for Arithmetic Subsequences of Fibonacci, Ch. 6, Logics and Type Systems in Theory and Practice (2024) Lect. Notes Comp. Sci. (LNCS) Vol. 14560, 100-110.
- F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
- Michel Dekking and Mike Keane, Two-block substitutions and morphic words, arXiv:2202.13548 [math.CO], 2022.
- A. Monnerot-Dumaine, The Fibonacci Word Fractal.
- Alexis Monnerot-Dumaine, The Fibonacci word fractal [Cached copy, with permission]
- J. L. Ramírez and G. N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014). See "Dense Fibonacci word". - _N. J. A. Sloane_, Mar 26 2014
Programs
-
Haskell
a143667 n = a143667_list !! (n-1) a143667_list = f a003849_list where f (0:0:ws) = 0 : f ws; f (0:1:ws) = 1 : f ws; f (1:0:ws) = 2 : f ws -- Reinhard Zumkeller, Jul 29 2014
-
Mathematica
Table[3 - (Floor[#1 #2] - 2 Floor[#1 (#2 - 1)] + Floor[#1 (#2 + 1)]) & @@ {1/GoldenRatio, 2 n}, {n, 100}] (* Michael De Vlieger, Oct 06 2017 *)
Formula
a(n) = decimal value of b(2n-1)b(2n), b(n) taken from A003849 (infinite Fibonacci word).
Comments