cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123639 Consider the 2^n compositions of n and count only those ending in an even part.

Original entry on oeis.org

0, 1, 2, 6, 18, 61, 224, 890, 3784, 17113, 81950, 414230, 2204110, 12314109, 72049548, 440379770, 2805266692, 18584809833, 127812870474, 910990458022, 6719535098378, 51223251471453, 403044829472760, 3269538955148698, 27314067026782976, 234749040898160153
Offset: 1

Views

Author

Alford Arnold, Oct 04 2006

Keywords

Comments

Compositions ending in an even part yield sequence 0 1 2 6 18 ... (this sequence). and A123638(n)+a(n) = A047970(n). Ending parity of compositions can be detected using mod(A065120,2)

Examples

			4
31 32 33
211 221 222
1111
Consider the above multisets- permute and note the parity of the ending part of each of the 14 compositions.
4
31 13 32 23 33
211 121 112 221 212 122 222
1111
4 is even
31 13 23 and 33 are odd
32 is even
etc
there are 1+1+4+0 even compositions therefore a(4)=6.
		

Crossrefs

Programs

  • Maple
    g:= proc(b,t,l,m) option remember; if t=0 then b*(1-l) else add (g(b, t-1, irem(k, 2), m), k=1..m-1) +g(1, t-1, irem(m, 2), m) fi end: a:= n-> add (g(0, k, 0, n+1-k), k=1..n): seq (a(n), n=1..30); # Alois P. Heinz, Nov 06 2009
  • Mathematica
    g[b_, t_, l_, m_] := g[b, t, l, m] = If[ t == 0 , b*(1-l), Sum[g[b, t-1, Mod[k, 2], m], {k, 1, m-1}] + g[1, t-1, Mod[m, 2], m]]; a[n_] := Sum[g[0, k, 0, n+1-k], {k, 1, n}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 04 2013, translated from Alois P. Heinz's Maple program *)

Extensions

More terms from Alois P. Heinz, Nov 06 2009