cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123647 Expansion of (eta(q^4) * eta(q^12) / (eta(q) * eta(q^3)))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 12, 22, 42, 80, 136, 233, 396, 636, 1020, 1622, 2496, 3822, 5808, 8642, 12786, 18788, 27208, 39184, 56088, 79432, 111912, 156823, 217964, 301517, 415104, 567758, 773244, 1048616, 1414432, 1900524, 2543940, 3389792, 4501164, 5956430
Offset: 1

Views

Author

Michael Somos, Oct 04 2006

Keywords

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 12*x^4 + 22*x^5 + 42*x^6 + 80*x^7 + 136*x^8 + ...
		

Crossrefs

Cf. A187196.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] QPochhammer[ q^12] / (QPochhammer[ q^] QPochhammer[ q^3]))^2, {q, 0, n}]; (* Michael Somos, Sep 02 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^3 + A)))^2, n))};

Formula

Euler transform of period 12 sequence [ 2, 2, 4, 0, 2, 4, 2, 0, 4, 2, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v * (1 + 4*u) * (1 + 4*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/16) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187196. - Michael Somos, Sep 02 2015
Convolution inverse of A187196. - Michael Somos, Sep 02 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (32 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Nov 08 2015