A123655 Expansion of q * psi(q^8) / phi(-q) in powers of q where psi(), phi() are Ramanujan theta functions.
1, 2, 4, 8, 14, 24, 40, 64, 101, 156, 236, 352, 518, 752, 1080, 1536, 2162, 3018, 4180, 5744, 7840, 10632, 14328, 19200, 25591, 33932, 44776, 58816, 76918, 100176, 129952, 167936, 216240, 277476, 354864, 452392, 574958, 728568, 920600, 1160064
Offset: 1
Keywords
Examples
G.f. = q + 2*q^2 + 4*q^3 + 8*q^4 + 14*q^5 + 24*q^6 + 40*q^7 + 64*q^8 + 101*q^9 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..1000
- Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
- Richard Moy, Congruences among power series coefficients of modular forms, arXiv:1309.4320
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^4] / EllipticTheta[ 4, 0, q] / 2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)), n))};
Formula
Expansion of eta(q^2) * eta(q^16)^2 / (eta(q)^2 * eta(q^8)) in powers of q.
Euler transform of period 16 sequence [ 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v * (1 + 4*u) * (1 + 2*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/8 * g(t) where q = exp(2 Pi i t) and g() is g.f. for A185338.
a(n) is odd iff n is an odd square. If n>2 is a power of 2 then the highest power of 2 dividing a(n) is (n/2)^3. - Michael Somos, Feb 18 2007
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k)) * (1 + x^(8*k))^2. Michael Somos, Sep 19 2013
a(n) ~ exp(sqrt(n)*Pi) / (2^(9/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
Comments