cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123655 Expansion of q * psi(q^8) / phi(-q) in powers of q where psi(), phi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 40, 64, 101, 156, 236, 352, 518, 752, 1080, 1536, 2162, 3018, 4180, 5744, 7840, 10632, 14328, 19200, 25591, 33932, 44776, 58816, 76918, 100176, 129952, 167936, 216240, 277476, 354864, 452392, 574958, 728568, 920600, 1160064
Offset: 1

Views

Author

Michael Somos, Oct 04 2006

Keywords

Comments

Ramanujan theta functions: phi(q) (A000122), psi(q) (A010054).
Number 12 of the 14 eta-quotients listed in Table 2 of Moy 2013. - Michael Somos, Sep 19 2013

Examples

			G.f. = q + 2*q^2 + 4*q^3 + 8*q^4 + 14*q^5 + 24*q^6 + 40*q^7 + 64*q^8 + 101*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q^4] / EllipticTheta[ 4, 0, q] / 2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^16 + A)^2 / (eta(x + A)^2 * eta(x^8 + A)), n))};

Formula

Expansion of eta(q^2) * eta(q^16)^2 / (eta(q)^2 * eta(q^8)) in powers of q.
Euler transform of period 16 sequence [ 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v * (1 + 4*u) * (1 + 2*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 1/8 * g(t) where q = exp(2 Pi i t) and g() is g.f. for A185338.
a(n) is odd iff n is an odd square. If n>2 is a power of 2 then the highest power of 2 dividing a(n) is (n/2)^3. - Michael Somos, Feb 18 2007
4 * a(n) = A007096(n) unless n=0. -(-1)^n * a(n) = A208605(n). Convolution inverse of A185338.
G.f.: x * Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k)) * (1 + x^(8*k))^2. Michael Somos, Sep 19 2013
a(2*n) = 2 * A107035(n). a(2*n + 1) = A093160(n). - Michael Somos, Sep 19 2013
a(n) ~ exp(sqrt(n)*Pi) / (2^(9/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017