cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123685 Counts compositions as described by table A047969; however, only those ending with an odd part are considered.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 1, 3, 4, 0, 1, 7, 14, 2, 1, 1, 15, 46, 14, 7, 0, 1, 31, 146, 74, 43, 3, 1, 1, 63, 454, 350, 247, 33, 10, 0, 1, 127, 1394, 1562, 1363, 273, 88, 4, 1, 1, 255, 4246, 6734, 7327, 2013, 724, 60, 13, 0, 1, 511, 12866, 28394, 38683, 13953, 5716, 676, 149, 5, 1, 1
Offset: 1

Views

Author

Alford Arnold, Oct 11 2006

Keywords

Examples

			Row four of table A047969 counts the 14 compositions
4
31 13 32 23 33
211 121 112 221 212 122 222
1111
whereas A123685 only counts
31 13 32 33
121 112 122
and 1111
		

Crossrefs

Diagonals include A000012, A059841, A000225, A123684 and A027649.

Programs

  • Maple
    g:= proc(b, t, l, m) option remember; `if`(t=0, b*l, add(
          g(b, t-1, irem(k, 2), m), k=1..m-1)+g(1, t-1, irem(m, 2), m))
        end:
    A:= (n, k)-> g(0, k, 0, n):
    seq(seq(A(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Nov 06 2009
  • Mathematica
    g[b_, t_, l_, m_] := g[b, t, l, m] = If[t == 0, b*l, Sum[g[b, t-1, Mod[k, 2], m], {k, 1, m-1}] + g[1, t-1, Mod[m, 2], m]]; A[n_, k_] := g[0, k, 0, n]; Table [Table [A[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Nov 06 2009