A123685 Counts compositions as described by table A047969; however, only those ending with an odd part are considered.
1, 1, 0, 1, 1, 1, 1, 3, 4, 0, 1, 7, 14, 2, 1, 1, 15, 46, 14, 7, 0, 1, 31, 146, 74, 43, 3, 1, 1, 63, 454, 350, 247, 33, 10, 0, 1, 127, 1394, 1562, 1363, 273, 88, 4, 1, 1, 255, 4246, 6734, 7327, 2013, 724, 60, 13, 0, 1, 511, 12866, 28394, 38683, 13953, 5716, 676, 149, 5, 1, 1
Offset: 1
Examples
Row four of table A047969 counts the 14 compositions 4 31 13 32 23 33 211 121 112 221 212 122 222 1111 whereas A123685 only counts 31 13 32 33 121 112 122 and 1111
Links
- Alois P. Heinz, Antidiagonals n = 1..141, flattened
Programs
-
Maple
g:= proc(b, t, l, m) option remember; `if`(t=0, b*l, add( g(b, t-1, irem(k, 2), m), k=1..m-1)+g(1, t-1, irem(m, 2), m)) end: A:= (n, k)-> g(0, k, 0, n): seq(seq(A(n, d+1-n), n=1..d), d=1..13); # Alois P. Heinz, Nov 06 2009
-
Mathematica
g[b_, t_, l_, m_] := g[b, t, l, m] = If[t == 0, b*l, Sum[g[b, t-1, Mod[k, 2], m], {k, 1, m-1}] + g[1, t-1, Mod[m, 2], m]]; A[n_, k_] := g[0, k, 0, n]; Table [Table [A[n, d+1-n], {n, 1, d}], {d, 1, 13}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *)
Extensions
More terms from Alois P. Heinz, Nov 06 2009