A078202 a(n) is the smallest prime of the form abs(n^k - k^n), the absolute difference between n^k and k^n, or -1 if no such prime exists.
2, 7, 2, 3, 7, 5, 79, 7, 431, 58049, 8375575711, 11, 13055867207, 13, 94233563770233419658037661865757455268745312881861761180195872329157714108064193, -1, 130783, 17, 523927, 19, 2046526777460104549122039297254727662107009
Offset: 1
Keywords
Examples
a(4) = 4^1 - 1^4 = 3, a(10) = 3^10 - 10^3 = 58049.
Crossrefs
Programs
-
Mathematica
Do[k = 1; While[ !PrimeQ[Abs[n^k - k^n]], k++ ]; Print[Abs[n^k - k^n]], {n, 1, 14}] (* Ryan Propper, Jun 20 2005 *)
Extensions
Corrected and extended by Ryan Propper, Jun 20 2005
More terms from Alexander Adamchuk, Oct 08 2006
Comments