A123748 Denominators of partial sums of a series for sqrt(5).
1, 5, 25, 5, 125, 3125, 15625, 78125, 78125, 390625, 9765625, 48828125, 244140625, 244140625, 78125, 6103515625, 30517578125, 152587890625, 152587890625, 762939453125, 19073486328125, 95367431640625, 476837158203125, 476837158203125, 2384185791015625
Offset: 0
Examples
a(3) = 5 because r(3) = 1+2/5+6/25+4/25 = 9/5 = A123747(3)/a(3).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
GAP
List([0..25], n-> DenominatorRat(Sum([0..n], k-> Binomial(2*k,k)/5^k )) ); # G. C. Greubel, Aug 10 2019
-
Magma
[Denominator( (&+[Binomial(2*k,k)/5^k: k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 10 2019
-
Maple
A123748:=n-> denom(sum(binomial(2*k,k)/5^k, k=0..n)); seq(A123748(n), n=0..25); # G. C. Greubel, Aug 10 2019
-
Mathematica
Table[Denominator[Sum[Binomial[2*k, k]/5^k, {k,0,n}]], {n, 0, 25}] (* G. C. Greubel, Aug 10 2019 *)
-
PARI
vector(25, n, n--; denominator(sum(k=0,n, binomial(2*k,k)/5^k))) \\ G. C. Greubel, Aug 10 2019
-
Sage
[denominator( sum(binomial(2*k,k)/5^k for k in (0..n)) ) for n in (0..25)] # G. C. Greubel, Aug 10 2019
Comments