A123751 Primes in A007406.
5, 266681, 40799043101, 86364397717734821, 36190908596780862323291147613117849902036356128879432564211412588793094572280300268379995976006474252029, 334279880945246012373031736295774418479420559664800307123320901500922509788908032831003901108510816091067151027837158805812525361841612048446489305085140033
Offset: 1
Keywords
Examples
A007406 begins {1, 5, 49, 205, 5269, 5369, 266681, 1077749, 9778141, ...}. Thus a(1) = 5 because A007406(2) = 5 is prime but A007406(1) = 1 is not prime. a(2) = 266681 because A007406(7) = 266681 is prime but all A007406(k) are composite for 2 < k < 7.
Links
- Carlos M. da Fonseca, M. Lawrence Glasser, Victor Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums, Applicable Analysis and Discrete Mathematics, Vol. 12, No. 1 (2018), 70-109.
- Eric Weisstein's World of Mathematics, Harmonic Number.
- Eric Weisstein's World of Mathematics, Wolstenholme's Theorem.
- Eric Weisstein's World of Mathematics, Wolstenholme Number
Programs
-
Mathematica
Do[f=Numerator[Sum[1/i^2,{i,1,n}]]; If[PrimeQ[f],Print[{n,f}]],{n,1,250}]
Comments