A123753 Partial sums of A070941.
1, 3, 6, 9, 13, 17, 21, 25, 30, 35, 40, 45, 50, 55, 60, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 168, 175, 182, 189, 196, 203, 210, 217, 224, 231, 238, 245, 252, 259, 266, 273, 280, 287, 294, 301, 308, 315, 322, 329, 336, 343
Offset: 0
Keywords
Links
- Peter Luschny, Table of n, a(n) for n = 0..10000
- Hsien-Kuei Hwang, S. Janson and T.-H. Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint 2016.
- Hsien-Kuei Hwang, S. Janson and T.-H. Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47.
Programs
-
Maple
A123753 := proc(n) local i, J, z; i := n+1: J := i; i := i-1; z := 1; while 0 <= i do J := J+i; i := i-z; z := z+z od; J end: seq(A123753(n), n=0..57); # Peter Luschny, Nov 30 2017 # Alternatively: a := n -> (n+1)*(1 + ilog2(2*n+3)) - 2^ilog2(2*n+3) + 1: seq(a(n), n=0..57); # Peter Luschny, Dec 02 2017
-
Mathematica
a[n_] := (n + 1)(1 + IntegerLength[n + 1, 2]) - 2^IntegerLength[n + 1, 2] + 1; Table[a[n], {n, 0, 57}] (* Peter Luschny, Dec 02 2017 *)
-
Python
def A123753(n): s, i, z = n+1, n, 1 while 0 <= i: s += i; i -= z; z += z return s print([A123753(n) for n in range(0, 58)]) # Peter Luschny, Nov 30 2017
-
Python
def A123753(n): return (n+1)*(1+(m:=n.bit_length()))-(1<
Chai Wah Wu, Mar 29 2023
Formula
a(n) = A003314(n+1)+1. - Reinhard Zumkeller, Oct 12 2006
Let bil(n) = floor(log_2(n)) + 1 for n>0, bil(0) = 0 and b(n) = n + n*bil(n) - 2^bil(n) + 1 then a(n) = b(n+1). (This suggests that '0' be prepended to this sequence.) - Peter Luschny, Dec 02 2017