cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A123861 Expansion of (f(q) * f(q^3) / (f(-q) * f(-q^3)))^2 in powers of q where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 4, 8, 20, 48, 88, 168, 320, 544, 932, 1584, 2544, 4080, 6488, 9984, 15288, 23232, 34568, 51144, 75152, 108832, 156736, 224352, 317728, 447648, 627292, 871856, 1206068, 1660416, 2271032, 3092976, 4194464, 5657728, 7602096, 10175760
Offset: 0

Views

Author

Michael Somos, Oct 14 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*q + 8*q^2 + 20*q^3 + 48*q^4 + 88*q^5 + 168*q^6 + 320*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q] QPochhammer[ -q^3] / (QPochhammer[ q] QPochhammer[ q^3]))^2, {q, 0, n}]; (* Michael Somos, Aug 31 2014 *)
    nmax=60; CoefficientList[Series[Product[(1+x^k)^6 * (1-x^k)^2 * (1+x^(3*k))^4 / ((1-x^(4*k))^2 * (1+x^(6*k))^2),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 13 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^6 * eta(x^6 + A)^6 / (eta(x + A)^4 * eta(x^3 + A)^4 * eta(x^4 + A)^2 * eta(x^12 + A)^2), n))};

Formula

Expansion of phi(q) * phi(q^3) / (phi(-q) * phi(-q^3)) in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Aug 31 2014
Expansion of eta(q^2)^6 * eta(q^6)^6 / (eta(q)^4 * eta(q^3)^4 * eta(q^4)^2 * eta(q^12)^2) in powers of q. - Michael Somos, Aug 31 2014
Euler transform of period 12 sequence [4, -2, 8, 0, 4, -4, 4, 0, 8, -2, 4, 0, ...].
G.f. A(q) satisfies 0 = f(A(q), A(q^2)) where f(u, v) = (u - 1)^2 - 4 * u*v * (v - 1).
Let g.f. A(x) = u, then B(x) = u * (u-1) / 4, B(x^2) = ((u-1) / 4)^2 / u where B(x) is the g.f. for A123653.
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = (1/4) * g(t) where q = exp(2 Pi i t) and g() is the g.f. for A187197. - Michael Somos, Aug 31 2014
a(n) = 4 * A123647(n) unless n=0.
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015