cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A123880 Inverse of number triangle A123878.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 5, 3, 5, 0, 1, 11, 18, 5, 7, 0, 1, 41, 39, 35, 7, 9, 0, 1, 120, 157, 75, 56, 9, 11, 0, 1, 421, 459, 325, 119, 81, 11, 13, 0, 1, 1381, 1668, 950, 553, 171, 110, 13, 15, 0, 1, 4840
Offset: 0

Views

Author

Paul Barry, Oct 16 2006

Keywords

Comments

First column is A055113. Row sums are A000108.

Examples

			Number triangle begins
1,
0, 1,
1, 0, 1,
1, 3, 0, 1,
5, 3, 5, 0, 1,
11, 18, 5, 7, 0, 1,
41, 39, 35, 7, 9, 0, 1,
120, 157, 75, 56, 9, 11, 0, 1
		

A123879 Expansion of (1-2*x+2*x^2-x^3)/(1-3*x+5*x^2-3*x^3+x^4).

Original entry on oeis.org

1, 1, 0, -3, -7, -7, 5, 32, 57, 33, -95, -311, -416, -11, 1209, 2745, 2573, -2368, -12943, -22015, -11007, 40593, 123712, 157165, -14279, -498119, -1075179, -934944, 1090985, 5220257, 8476193, 3535193, -17205600
Offset: 0

Views

Author

Paul Barry, Oct 16 2006

Keywords

Comments

Row sums of number triangle A123878.

Crossrefs

Programs

  • GAP
    a:=[1,1,0,-3];; for n in [5..40] do a[n]:=3*a[n-1]-5*a[n-2]+3*a[n-3]-a[n-4]; od; a; # G. C. Greubel, Aug 08 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-2*x+2*x^2-x^3)/(1-3*x+5*x^2-3*x^3+x^4) )); // G. C. Greubel, Aug 08 2019
    
  • Maple
    seq(coeff(series((1-2*x+2*x^2-x^3)/(1-3*x+5*x^2-3*x^3+x^4), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 08 2019
  • Mathematica
    LinearRecurrence[{3,-5,3,-1}, {1,1,0,-3}, 40] (* G. C. Greubel, Aug 08 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-2*x+2*x^2-x^3)/(1-3*x+5*x^2-3*x^3+x^4)) \\ G. C. Greubel, Aug 08 2019
    
  • Sage
    def A123879_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P((1-2*x+2*x^2-x^3)/(1-3*x+5*x^2-3*x^3+x^4)).list()
    A123879_list(40) # G. C. Greubel, Aug 08 2019
    

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..n} (-1)^(j-k)*C(n+j,2*j)*C(j+k,2*k).
Showing 1-2 of 2 results.