A123901 a(n) = (n+3)/gcd(d(n), d(n+2)) where d(n) = cancellation factor in reducing Sum_{k=0..n} 1/k! to lowest terms.
3, 4, 5, 3, 7, 4, 9, 1, 11, 6, 13, 7, 3, 8, 17, 9, 19, 2, 21, 11, 23, 12, 5, 1, 27, 14, 29, 3, 31, 16, 33, 17, 7, 18, 37, 19, 3, 4, 41, 21, 43, 22, 9, 23, 47, 24, 49, 5, 51, 2, 53, 27, 11, 28, 57, 29, 59, 6, 61, 31, 63, 32, 1, 33, 67, 34, 69, 7, 71, 36, 73, 1, 15, 38, 77, 3, 79, 8, 81
Offset: 0
Examples
a(5) = 4 because (5+3)/gcd(d(5),d(7)) = 8/gcd(2,20) = 8/2 = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..4096
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, Amer. Math. Monthly 113 (2006) 637-641.
- J. Sondow, A geometric proof that e is irrational and a new measure of its irrationality, arXiv:0704.1282 [math.HO], 2007-2010.
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, arXiv:0709.0671 [math.NT], 2007-2009; Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
Programs
-
Mathematica
(A[n_] := If[n==0,1,n*A[n-1]+1]; d[n_] := GCD[A[n],n! ]; Table[(n+3)/GCD[d[n],d[n+2]], {n,0,79}]) (* Second program, faster: *) Table[(n + 3)/Apply[GCD, Map[GCD[#!, Floor[E*#!] - Boole[# == 0]] &, n + {0, 2}]], {n, 0, 78}] (* Michael De Vlieger, Jul 12 2017 *)
-
PARI
A000522(n) = sum(k=0, n, binomial(n, k)*k!); \\ This function from Joerg Arndt, Dec 14 2014 A093101(n) = gcd(n!,A000522(n)); m1=m2=1; for(n=0,4096,m=m1; m1=m2; m2 = A093101(n+2); m124781 = gcd(m,m2); write("b093101.txt", n, " ", m); write("b124781.txt", n, " ", m124781); write("b123901.txt", n, " ", (n+3)/m124781)); \\ Antti Karttunen, Jul 12 2017