A123926 Greatest common divisor of sigma_k(n) for all k >= 1.
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 6, 4, 2, 2, 2, 1, 2, 4, 2, 2, 4, 2, 3, 4, 2, 4, 1, 2, 2, 4, 2, 2, 4, 2, 6, 2, 2, 2, 2, 3, 3, 4, 2, 2, 4, 4, 2, 4, 2, 2, 12, 2, 2, 2, 1, 4, 4, 2, 6, 4, 4, 2, 1, 2, 2, 2, 2, 4, 4, 2, 2, 1, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 6, 4, 2, 4, 6, 2, 3, 2, 1, 2, 4, 2, 2, 8
Offset: 1
Examples
For n=4, sigma_1(n) = 7, sigma_2(n) = 21, both divisible by 7, but sigma_3(n) = 73, which is not, so a(4) = 1.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Dirichlet's Theorem
Programs
-
Mathematica
a[n_] := GCD @@ Table[DivisorSigma[k, n] , {k, 0, EulerPhi[n]}]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, May 21 2012 *)
-
PARI
a(n)=my(d=divisors(n), g=#d); for(k=1, eulerphi(n), g=gcd(lift(sum(i=1,#d,Mod(d[i],g)^k)),g); if(g<3,return(g))); g \\ Charles R Greathouse IV, Jun 17 2013
Comments