A123967 Triangle read by rows: T(0,0)=1; for n >= 1 T(n,k) is the coefficient of x^k in the monic characteristic polynomial of the tridiagonal n X n matrix with main diagonal 5,5,5,... and sub- and superdiagonals 1,1,1,... (0 <= k <= n).
1, -5, 1, 24, -10, 1, -115, 73, -15, 1, 551, -470, 147, -20, 1, -2640, 2828, -1190, 246, -25, 1, 12649, -16310, 8631, -2400, 370, -30, 1, -60605, 91371, -58275, 20385, -4225, 519, -35, 1, 290376, -501150, 374115, -157800, 41140, -6790, 693, -40, 1, -1391275, 2704755, -2313450, 1142730, -359275, 74571, -10220, 892, -45, 1
Offset: 0
Examples
Triangle starts: 1; -5, 1; 24, -10, 1; -115, 73, -15, 1; 551, -470, 147, -20, 1; -2640, 2828, -1190, 246, -25, 1; 12649, -16310, 8631, -2400, 370, -30, 1; ... Triangle (0, -5, 1/5, -1/5, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: 1; 0, 1; 0, -5, 1; 0, 24, -10, 1: 0, -115, 73, -15, 1; 0, 551, -470, 147, -20, 1; 0, -2640, 2828, -1190, 246, -25, 1; ...
Links
- Eric Weisstein's World of Mathematics, Tridiagonal Matrix
Crossrefs
Programs
-
Maple
with(linalg): m:=proc(i,j) if i=j then 5 elif abs(i-j)=1 then 1 else 0 fi end: T:=(n,k)->coeff(charpoly(matrix(n,n,m),x),x,k): 1; for n from 1 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
-
Mathematica
T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n-1, k-1] - 5 T[n-1, k] - T[n-2, k]; T[0, 0] = 1; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
-
Sage
@CachedFunction def A123967(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 return A123967(n-1,k-1)-A123967(n-2,k)-5*A123967(n-1,k) for n in (0..9): [A123967(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
T(n,0) = (-1)^n*A004254(n+1).
G.f.: 1/(1+5*x+x^2 - y*x). - Philippe Deléham, Feb 22 2012
T(n,k) = T(n-1,k-1) - 5*T(n-1,k) - T(n-2,k), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Jan 22 2014
Extensions
Edited by N. J. A. Sloane, Dec 03 2006
Comments