A123971 Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Examples
Triangle begins: 1 2, -1 5, -5, 1 13, -19, 8, -1 34, -65, 42, -11, 1 89, -210, 183, -74, 14, -1 233, -654, 717, -394, 115, -17, 1 Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins: 1 0, 1 0, 2, -1 0, 5, -5, 1 0, 13, -19, 8, -1 0, 34, -65, 42, -11, 1 0, 89, -210, 183, -74, 14, -1 0, 233, -654, 717, -394, 115, -17, 1
Crossrefs
Programs
-
Mathematica
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
PARI
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
Sage
@CachedFunction def A123971(n,k): # With T(0,0) = 1! if n< 0: return 0 if n==0: return 1 if k == 0 else 0 h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k) return A123971(n-1,k-1) - A123971(n-2,k) - h for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
T(n,k) = (-1)^n*A126124(n+1,k+1).
T(n,k) = (-1)^k*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1-x)/(1+(y-3)*x+x^2).
T(n+1,1) = -A001870(n).
Extensions
Edited by N. J. A. Sloane, May 31 2014
Comments