A124010 Triangle in which first row is 0, n-th row (n>1) lists the exponents of distinct prime factors ("ordered prime signature") in the prime factorization of n.
0, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1
Offset: 1
Examples
Initial values of exponents are: 1, [0] 2, [1] 3, [1] 4, [2] 5, [1] 6, [1, 1] 7, [1] 8, [3] 9, [2] 10, [1, 1] 11, [1] 12, [2, 1] 13, [1] 14, [1, 1] 15, [1, 1] 16, [4] 17, [1] 18, [1, 2] 19, [1] 20, [2, 1] ...
Links
Crossrefs
Programs
-
Haskell
a124010 n k = a124010_tabf !! (n-1) !! (k-1) a124010_row 1 = [0] a124010_row n = f n a000040_list where f 1 _ = [] f u (p:ps) = h u 0 where h v e | m == 0 = h v' (e + 1) | m /= 0 = if e > 0 then e : f v ps else f v ps where (v',m) = divMod v p a124010_tabf = map a124010_row [1..] -- Reinhard Zumkeller, Jun 12 2013, Aug 27 2011
-
Maple
expts:=proc(n) local t1,t2,t3,t4,i; if n=1 then RETURN([0]); fi; if isprime(n) then RETURN([1]); fi; t1:=ifactor(n); if nops(factorset(n))=1 then RETURN([op(2,t1)]); fi; t2:=nops(t1); t3:=[]; for i from 1 to t2 do t4:=op(i,t1); if nops(t4) = 1 then t3:=[op(t3),1]; else t3:=[op(t3),op(2,t4)]; fi; od; RETURN(t3); end; # N. J. A. Sloane, Dec 20 2007 PrimeSignature := proc(n) local F, e, k; F := ifactors(n)[2]; [seq(e, e = seq(F[k][2], k = 1..nops(F)))] end: ListTools:-Flatten([[0], seq(PrimeSignature(n), n = 1..73)]); # Peter Luschny, Jun 15 2025
-
Mathematica
row[1] = {0}; row[n_] := FactorInteger[n][[All, 2]] // Flatten; Table[row[n], {n, 1, 80}] // Flatten (* Jean-François Alcover, Aug 19 2013 *)
-
PARI
print1(0); for(n=2,50, f=factor(n)[,2]; for(i=1,#f,print1(", "f[i]))) \\ Charles R Greathouse IV, Nov 07 2014
-
PARI
A124010_row(n)=if(n,factor(n)[,2]~,[0]) \\ M. F. Hasler, Oct 12 2018
-
Python
from sympy import factorint def a(n): f=factorint(n) return [0] if n==1 else [f[i] for i in f] for n in range(1, 21): print(a(n)) # Indranil Ghosh, May 16 2017
Formula
n = Product_k A027748(n,k)^a(n,k).
Extensions
Name edited by M. F. Hasler, Apr 08 2022
Comments