A124027 G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying p(k, x) = Sum[p(j, x)*p(k - j, x), {j, 2, k - 1}]. The coefficients of these polynomials give the triangle shown here.
0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0
Offset: 1
Examples
Triangular sequence {0}, {0, 1}, {1}, {0, 1}, {1, 0, 1}, {0, 3, 0, 1}, {2, 0, 6, 0, 1}, {0, 10, 0, 10, 0, 1}, {5, 0, 30, 0, 15, 0, 1}, {0, 35, 0, 70, 0, 21, 0, 1}, {14, 0, 140, 0, 140, 0, 28, 0, 1}
References
- G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.
Programs
-
Maple
p := proc(k,x) option remember ; if k = 0 then 0 ; elif k= 1 then x; elif k= 2 then 1; else add(p(j,x)*p(k-j,x),j=2..k-1) ; fi ; end: A124027 := proc(n,k) coeftayl( p(n,x),x=0,k) ; end: printf("0, 0, 1, ") ; for n from 0 to 18 do for k from 0 to n-2 do printf("%d, ",A124027(n,k)) ; od: od: # R. J. Mathar, Oct 08 2007
-
Mathematica
p[0, x] = 0; p[1, x] = x; p[2, x] = 1; p[k_, x_] := p[k, x] = Sum[p[j, x]*p[k - j, x], {j, 2, k - 1}]; w = Table[CoefficientList[p[n, x], x], {n, 0, 10}]; Flatten[w]
Formula
p(k, x) = Sum[p(j, x)*p(k - j, x), {j, 2, k - 1}].
Extensions
Edited by N. J. A. Sloane, Oct 07 2007
More terms from R. J. Mathar, Oct 08 2007
Comments