A124061 Multiplicative encoding of Catalan's triangle: Product p(i+1)^T(n,i).
2, 6, 450, 2836181250, 81492043057751910481759423160156250, 4561157026363824997482074305569280581505536351717093893927260661169357729871499327113563125890139588096951624677718591308593750
Offset: 1
Examples
a(1) = p(1)^T(1,1) = 2^1 = 2. a(2) = p(1)^T(2,1) * p(2)^T(2,2) = 2^1 * 3^1 = 6. a(3) = p(1)^T(3,1) * p(2)^T(3,2) * p(3)^T(3,3) = 2^1 * 3^2 * 5^2 = 450. a(4) = 2^1 * 3^3 * 5^5 * 7^5 = 2836181250. a(5) = 2^1 * 3^4 * 5^9 * 7^14 * 11^14 = 81492043057751910481759423160156250. a(6) = 2^1 * 3^5 * 5^14 * 7^28 * 11^42 * 13^42.
Formula
a(n) = Prod[i=i..n] p(i+1)^T(n,i), where T(n,i) are Catalan's triangle as in A009766.
Comments