A124075 a(n) = 2^(3^(4^...^n)...).
2, 8, 2417851639229258349412352
Offset: 2
Examples
a(4) = 2^(3^4) = 2417851639229258349412352.
References
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 393-402.
Links
- David Applegate, Marc LeBrun and N. J. A. Sloane, Descending Dungeons and Iterated Base-Changing, arXiv:math/0611293 [math.NT], 2006-2007.
- David Applegate, Marc LeBrun, N. J. A. Sloane, Descending Dungeons, Problem 11286, Amer. Math. Monthly, 116 (2009) 466-467.
Programs
-
Mathematica
a[n_] := Fold[#2^#1&, n, Range[2, n-1] // Reverse]; Table[a[n], {n, 2, 4}] (* Jean-François Alcover, Oct 10 2018 *)
Comments