cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124094 Table T(n,m) giving number of partitions of n such that all parts are coprime to m. Read along antidiagonals (increasing n, decreasing m).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 5, 1, 1, 1, 2, 2, 7, 1, 1, 2, 2, 4, 3, 11, 1, 1, 1, 3, 2, 5, 4, 15, 1, 1, 2, 1, 5, 3, 7, 5, 22, 1, 1, 1, 3, 1, 6, 4, 9, 6, 30, 1, 1, 2, 2, 5, 2, 10, 5, 13, 8, 42, 1, 1, 1, 2, 2, 7, 2, 13, 6, 16, 10, 56, 1, 1, 2, 2, 4, 3, 11, 3, 19, 8, 22, 12, 77, 1, 1, 1, 3, 2, 5, 4
Offset: 0

Views

Author

R. J. Mathar, Nov 26 2006

Keywords

Examples

			Upper left corner of table starts with row m=1 and column n=0:
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,490,627,792,1002,1255,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,6,10,13,19,25,34,44,60, 76,100,127,164,205,262,325,409,505, 628, 769,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,14,21,28,39,51,70, 90,119,153,199,252,324,406,515,642, 804, 994,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,2,4,5, 7, 9,13,16,22,27,36, 44, 57, 70, 89,108,135,163,202,243, 297, 355,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
1,1,2,3,5,7,11,15,22,30,42,55,76, 99,132,171,224,286,370,468,597,750, 945,1177,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,100,134,174,228,292,378,479,612,770, 972,1213,
1,1,1,2,2,3, 4, 4, 5, 7, 8,10,12, 14, 17, 21, 24, 28, 34, 39, 46, 53,  61,  71,
1,1,2,2,4,4, 6, 7,11,12,16,19,25, 29, 37, 44, 56, 65, 80, 94,114,133, 160, 187,
1,1,1,2,2,3, 4, 5, 6, 8,10,12,15, 18, 22, 27, 32, 38, 46, 54, 64, 76,  89, 104,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,296,384,488,624,787, 995,1244,
1,1,1,1,1,2, 2, 3, 3, 3, 4, 5, 6,  7,  8,  9, 10, 12, 14, 16, 18, 20,  23,  26,
1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,231,297,385,489,626,790, 999,1250,
1,1,1,2,2,2, 3, 4, 4, 6, 7, 8,10, 12, 14, 16, 19, 22, 26, 30, 35, 41,  47,  54,
		

Crossrefs

Row m=1 is A000041. Rows m=2, 4, 8, ... (where m is a power of 2) are A000009. Rows m=3, 9, ... (where m is a power of 3) are A000726. Row m=5 is A035959. Row=7 is A035985. Row m=10 is A096938.

Programs

  • Maple
    b:= proc(n, i, m) option remember;
          if n<0 then 0
        elif n=0 then 1
        elif i<1 then 0
        else b(n, i-1, m) +`if`(igcd(m, i)=1, b(n-i, i, m), 0)
          fi
        end:
    T:= (n, m)-> b(n, n, m):
    seq (seq (T(n, 1+d-n), n=0..d), d=0..13);  # Alois P. Heinz, Sep 28 2011
  • Mathematica
    b[n_, i_, m_] := b[n, i, m] = Which[n < 0, 0, n == 0, 1, i < 1, 0, True, b[n, i-1, m] + If[GCD[m, i] == 1, b[n-i, i, m], 0]]; t[n_, m_] := b[n, n, m]; Table[Table[t[n, 1+d-n], {n, 0, d}], {d, 0, 13}] // Flatten (* Jean-François Alcover, Jan 10 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    sigmastar(n,m)= { local(d,res=0) ; d=divisors(n) ; for(i=1,matsize(d)[2], if( gcd(d[i],m)==1, res += d[i] ; ) ; ) ; return(res) ; } f(n,m)= { local(qvec=vector(n+1,i,gcd(1,m))) ; for(i=1,n, qvec[i+1]=sum(k=1,i,sigmastar(k,m)*qvec[i-k+1])/i ; ) ; return(qvec[n+1]) ; } { for(d=1,18, for(c=0,d-1, r=d-c ; print1(f(c,r),",") ; ) ; ) ; }