A124109 Numbers whose abundance (A033880) or deficiency (A033879) is a semiprime number.
5, 7, 11, 12, 14, 15, 21, 23, 26, 27, 34, 35, 39, 40, 44, 47, 52, 55, 57, 58, 59, 63, 65, 68, 70, 72, 74, 75, 77, 80, 82, 83, 85, 88, 93, 98, 107, 110, 115, 116, 119, 122, 125, 129, 133, 143, 144, 152, 155, 160, 162, 164, 167, 169, 171, 178, 179, 183, 185, 187, 189
Offset: 1
Examples
a(1) = 5 because abs(sigma(5) - 2*5) = abs(6-10) = abs(-4) = 4 = 2^2 is semiprime. a(2) = 7 because abs(sigma(7) - 2*7) = abs(8-14) = abs(-6) = 6 = 2 * 3 is semiprime. a(3) = 11 because abs(sigma(11) - 2*11) = abs(12-22) = abs(-10) = 10 = 2 * 5 is semiprime. a(4) = 12 because abs(sigma(12) - 2*12) = abs(28-24) = abs(-4) = 4 = 2^2 is semiprime. a(5) = 14 because abs(sigma(14) - 2*14) = abs(24-28) = abs(+4) = 4 = 2^2 is semiprime. a(6) = 15 because abs(sigma(15) - 2*15) = abs(24-30) = abs(-6) = 6 = 2 * 3 is semiprime. a(7) = 21 because abs(sigma(21) - 2*21) = abs(32-42) = abs(-10) = 10 = 2 * 5 is semiprime. a(8) = 23 because abs(sigma(23) - 2*23) = abs(24-46) = abs(-22) = 22 = 2 * 11 is semiprime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@n == 2; Select[ Range@ 193, semiPrimeQ@Abs[DivisorSigma[1, # ] - 2# ] &] (* Robert G. Wilson v *)
Formula
Abs[sigma(a(n)) - 2*a(n)] is a semiprime, where sigma(k) = sum of divisors of k. {Abs[sigma(a(n)) - 2*a(n)]} is in A001358.
Extensions
More terms from Robert G. Wilson v, Nov 29 2006
Comments