cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124110 Primes of the form A124080 (10 times triangular numbers) +- 1.

Original entry on oeis.org

11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, 1049, 1051, 1201, 1361, 1531, 1709, 1901, 2099, 2309, 2311, 2531, 2999, 3001, 3251, 3511, 3779, 4349, 4649, 4651, 5279, 5281, 6299, 6301, 6659, 6661, 7411, 8609, 9029, 9461, 9901, 11279
Offset: 1

Views

Author

Jonathan Vos Post, Nov 26 2006

Keywords

Comments

Numbers j such that A124080(j)-1 is prime or A124080(j)+1 is prime, where repetition means a twin prime, are 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 8, 9, 11, 11, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 24, 24, 25, ..., . - Robert G. Wilson v, Nov 29 2006

Examples

			a(1) = A124080(1)+1 = (10*T(1)) - 1 = 10*(1*(1+1)/2) + 1 = 10+1 = 11 is prime.
a(2) = A124080(2)-1 = (10*T(2))-1 = 10*(2*(2+1)/2) - 1 = 30-1 = 29 is prime.
a(3) = A124080(2)+1 = (10*T(2))+1 = 10*(2*(2+1)/2) + 1 = 30+1 = 31 is prime.
		

Crossrefs

Programs

  • Mathematica
    s = {}; Do[t = 5n(n + 1); If[PrimeQ[t - 1], AppendTo[s, t - 1]]; If[PrimeQ[t + 1], AppendTo[s, t + 1]], {n, 47}]; s (* Robert G. Wilson v *)

Formula

{A124080(j)-1 when prime} U {A124080(j)+1 when prime} = {i = 10*T(j)-1 such that i is prime} U {i = 10*T(j)+1 such that i is prime} where T(j) = A000217(j) = j*(j+1)/2.

Extensions

More terms from Robert G. Wilson v, Nov 29 2006