A124112 Numbers n such that ((1+I)^n+1)/(2+I) is a Gaussian prime.
5, 7, 9, 11, 13, 17, 29, 43, 53, 89, 283, 557, 563, 613, 691, 1223, 2731, 5147, 5323, 5479, 9533, 10771, 11257, 11519, 12583, 23081, 36479, 52567, 52919, 125929, 221891, 235099, 305867, 311027, 333227, 365689, 792061, 1127239, 1148729, 1347781, 1669219, 1882787, 2305781, 4533073, 5243339
Offset: 1
Keywords
Examples
For n = 27, ((1+I)^36479+1)/(2+I) is a probable Gaussian prime because its norm, (2^36479+2^18240+1)/5, is a Fermat PRP.
Links
- Henri Lifchitz & Renaud Lifchitz, PRP Records. Probable Primes Top 10000.
Crossrefs
Programs
-
Mathematica
(* A naive script not convenient for large terms *) Reap[For[n = 2, n < 10^4, n = If[n == 7, 9, NextPrime[n]], If[PrimeQ[((1 + I)^n + 1)/(2 + I), GaussianIntegers -> True], Print[n]; Sow[n]] ]][[2, 1]] (* Jean-François Alcover, Feb 02 2015 *)
-
PARI
forprime(n=3, 2731, if(ispseudoprime((2^n+kronecker(2, n)*2^((n+1)/2)+1)/5), print1(n ", "))); /* Serge Batalov, Mar 31 2014 */
Extensions
a(37) from Thomas Ritschel (see PRP Records). - Serge Batalov, Mar 31 2014
a(38)-a(42) from Borys Jaworski (see PRP Records). - Serge Batalov, Mar 31 2014
a(43)-a(44) from Serge Batalov, Mar 31 2014
a(45) from Serge Batalov, Jul 17 2020
Comments