A168421 Small Associated Ramanujan Prime, p_(i-n).
2, 7, 11, 17, 23, 29, 31, 37, 37, 53, 53, 59, 67, 79, 79, 89, 97, 97, 127, 127, 127, 127, 127, 137, 137, 149, 157, 157, 179, 179, 191, 191, 211, 211, 211, 223, 223, 223, 233, 251, 251, 257, 293, 293, 307, 307, 307, 307, 307, 331, 331, 331
Offset: 1
Keywords
Examples
For n=10, the n-th Ramanujan prime is A104272(n)= 97, the value of k = 25, so i is >= 26, i-n >= 16, the i-n prime is 53, and 2*53 = 106. This leaves the range [97, 106] for the 26th prime which is 101. In this example, 53 is the small associated Ramanujan prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010; Amer. Math. Monthly 116 (2009) 630-635.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2
- Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 19 (2014), #A19
- Wikipedia, Ramanujan Prime
Crossrefs
Programs
-
Mathematica
nn = 100; t = Table[0, {nn}]; Do[m = PrimePi[2n] - PrimePi[n]; If[0 < m <= nn, t[[m]] = n], {n, 15 nn}]; A084139 = Join[{1}, t]; a[n_] := NextPrime[A084139[[n]]]; Array[a, nn] (* Jean-François Alcover, Nov 07 2018, after T. D. Noe in A084139 *)
-
Perl
use ntheory ":all"; say next_prime((nth_ramanujan_prime($)+1) >> 1) for 1..100; # _Dana Jacobsen, Mar 02 2016
Formula
a(n) = prime(primepi(A104272(n)) + 1 - n).
a(n) = nextprime(A084139(n+1)), where nextprime(x) is the next prime > x. Note: some A084139(n) may be prime, therefore nextprime(x) not equal to x. - John W. Nicholson, Oct 11 2013
a(n) = nextprime(A084140(n)). - John W. Nicholson, Oct 11 2013
Extensions
Extended by T. D. Noe, Nov 22 2010
Comments