cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A202389 Triangle T(n,k), read by rows, given by (1, -2, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, -1, 1, 2, -1, -2, 2, 3, 1, -2, -5, 3, 5, 1, 3, -5, -10, 5, 8, -1, 3, 9, -10, -20, 8, 13, -1, -4, 9, 22, -20, -38, 13, 21, 1, -4, -14, 22, 51, -38, -71, 21, 34, 1, 5, -14, -40, 51, 111, -71, -130, 34, 55
Offset: 0

Views

Author

Philippe Deléham, Dec 18 2011

Keywords

Comments

T(n,n) = A000045(n+1) = Fibonacci(n+1).

Examples

			Triangle begins :
1
1, 1
-1, 1, 2
-1, -2, 2, 3
1, -2, -5, 3, 5
1, 3, -5, -10, 5, 8
-1, 3, 9, -10, -20, 8, 13
		

Crossrefs

Programs

  • Mathematica
    With[{m = 9}, CoefficientList[CoefficientList[Series[(1+x)/(1-y*x+(1-y^2)*x
    ^2), {x, 0 , m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 17 2020 *)
  • PARI
    T(n,k) = if (k<0, 0, if (nMichel Marcus, Feb 17 2020

Formula

T(n,k) = T(n-1,k-1) + T(n-2,k-2) - T(n-2,k) with T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if n
G.f.: (1+x)/(1-y*x+(1-y^2)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A046717(n), A000007(n), A057077(n), A040000(n), A000244(n) for x = -2, -1, 0, 1, 2 respectively.

Extensions

a(52) corrected by Georg Fischer, Feb 17 2020
Showing 1-1 of 1 results.