A124223 Table T(n,k) = reciprocal of k modulo prime(n), for 1 <= k < prime(n), read by rows.
1, 1, 2, 1, 3, 2, 4, 1, 4, 5, 2, 3, 6, 1, 6, 4, 3, 9, 2, 8, 7, 5, 10, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16, 1, 10, 13, 5, 4, 16, 11, 12, 17, 2, 7, 8, 3, 15, 14, 6, 9, 18, 1, 12, 8, 6, 14, 4, 10, 3, 18, 7, 21, 2, 16, 5, 20, 13, 19, 9, 17, 15, 11, 22
Offset: 1
Examples
From Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010: (Start) Table begins: 1; 1,2; 1,3,2,4; 1,4,5,2,3,6; 1,6,4,3,9,2,8,7,5,10; 1,7,9,10,8,11,2,5,3,4,6,12; 1,9,6,13,7,3,5,15,2,12,14,10,4,11,8,16; 1,10,13,5,4,16,11,12,17,2,7,8,3,15,14,6,9,18; 1,12,8,6,14,4,10,3,18,7,21,2,16,5,20,13,19,9,17,15,11,22; ... (End)
Links
- Franklin T. Adams-Watters, Table of n, a(n) for n = 1..4181 (primes less than 200)
- Eric Weisstein's World of Mathematics, Modular Inverse
Programs
-
Maple
seq(seq(k^(ithprime(n)-2) mod ithprime(n), k=1..ithprime(n)-1), n=1..12); # Ridouane Oudra, Oct 04 2022
-
Mathematica
Flatten[Table[PowerMod[n,-1,p],{p,Prime[Range[9]]},{n,p-1}]] (* Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010 *) T[n_, k_] := ModularInverse[k, Prime[n]]; Table[T[n, k], {n, 1, 9}, {k, 1, Prime[n]-1}] // Flatten (* Jean-François Alcover, May 08 2017 *)
-
PARI
row(n) = my(p=prime(n)); vector(p-1, k, lift(1/Mod(k, prime(n)))); \\ Michel Marcus, Feb 24 2023
Formula
From Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010: (Start)
T(n, 1) = 1;
T(n, T(n,k)) = k;
T(n, prime(n)-1) = prime(n)-1. (End)
T(n,k) = k^(prime(n)-2) mod prime(n), with 1 <= k < prime(n). - Ridouane Oudra, Oct 04 2022
From Ammar Khatab, Nov 07 2024: (Start)
T(n,2) = (prime(n)+1)/2;
T(n,3) = (2*prime(n)+1)/3 + 2*prime(n)/(sqrt(3)*3) * sin(4*(prime(n)+2)/3 * Pi);
T(n,8) = (8*prime(n)+1)/8 - prime(n)/8 * (prime(n) mod 8);
T(n,prime(n)-k) = prime(n) - T(n,k);
T(n,prime(n)-2) = (prime(n)-1)/2 ;
T(n,prime(n)-3) = (prime(n)-1)/3 - 2*prime(n)/(sqrt(3)*3) * sin(4*(prime(n)+2)/3 * Pi);
T(n,prime(n)-8) = -1/8 + prime(n)/8 * (prime(n) mod 8). (End)
Comments