cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A124223 Table T(n,k) = reciprocal of k modulo prime(n), for 1 <= k < prime(n), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 1, 4, 5, 2, 3, 6, 1, 6, 4, 3, 9, 2, 8, 7, 5, 10, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16, 1, 10, 13, 5, 4, 16, 11, 12, 17, 2, 7, 8, 3, 15, 14, 6, 9, 18, 1, 12, 8, 6, 14, 4, 10, 3, 18, 7, 21, 2, 16, 5, 20, 13, 19, 9, 17, 15, 11, 22
Offset: 1

Views

Author

Keywords

Comments

T(n,k) = smallest m such that k*m == 1 (mod prime(n)); prime(n) is the n-th prime: A000040(n).

Examples

			From Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010: (Start)
Table begins:
  1;
  1,2;
  1,3,2,4;
  1,4,5,2,3,6;
  1,6,4,3,9,2,8,7,5,10;
  1,7,9,10,8,11,2,5,3,4,6,12;
  1,9,6,13,7,3,5,15,2,12,14,10,4,11,8,16;
  1,10,13,5,4,16,11,12,17,2,7,8,3,15,14,6,9,18;
  1,12,8,6,14,4,10,3,18,7,21,2,16,5,20,13,19,9,17,15,11,22;
  ... (End)
		

Crossrefs

Cf. A124224, A102057, A000040, A006093 (row lengths).

Programs

  • Maple
    seq(seq(k^(ithprime(n)-2) mod ithprime(n), k=1..ithprime(n)-1), n=1..12); # Ridouane Oudra, Oct 04 2022
  • Mathematica
    Flatten[Table[PowerMod[n,-1,p],{p,Prime[Range[9]]},{n,p-1}]] (* Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010 *)
    T[n_, k_] := ModularInverse[k, Prime[n]]; Table[T[n, k], {n, 1, 9}, {k, 1, Prime[n]-1}] // Flatten (* Jean-François Alcover, May 08 2017 *)
  • PARI
    row(n) = my(p=prime(n)); vector(p-1, k, lift(1/Mod(k, prime(n)))); \\ Michel Marcus, Feb 24 2023

Formula

From Alexander Elkins (alexander_elkins(AT)hotmail.com), Mar 26 2010: (Start)
T(n, 1) = 1;
T(n, T(n,k)) = k;
T(n, prime(n)-1) = prime(n)-1. (End)
T(n,k) = k^(prime(n)-2) mod prime(n), with 1 <= k < prime(n). - Ridouane Oudra, Oct 04 2022
From Ammar Khatab, Nov 07 2024: (Start)
T(n,2) = (prime(n)+1)/2;
T(n,3) = (2*prime(n)+1)/3 + 2*prime(n)/(sqrt(3)*3) * sin(4*(prime(n)+2)/3 * Pi);
T(n,8) = (8*prime(n)+1)/8 - prime(n)/8 * (prime(n) mod 8);
T(n,prime(n)-k) = prime(n) - T(n,k);
T(n,prime(n)-2) = (prime(n)-1)/2 ;
T(n,prime(n)-3) = (prime(n)-1)/3 - 2*prime(n)/(sqrt(3)*3) * sin(4*(prime(n)+2)/3 * Pi);
T(n,prime(n)-8) = -1/8 + prime(n)/8 * (prime(n) mod 8). (End)