A124224 Table T(n,k) = reciprocal of k-th number prime to n, modulo n, for 1 <= k <= phi(n).
0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 4, 5, 2, 3, 6, 1, 3, 5, 7, 1, 5, 7, 2, 4, 8, 1, 7, 3, 9, 1, 6, 4, 3, 9, 2, 8, 7, 5, 10, 1, 5, 7, 11, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 1, 5, 3, 11, 9, 13, 1, 8, 4, 13, 2, 11, 7, 14, 1, 11, 13, 7, 9, 3, 5, 15, 1, 9, 6, 13, 7, 3, 5, 15, 2, 12, 14, 10, 4, 11, 8, 16
Offset: 1
Examples
The table T(n,k) starts: n\k 1 2 2 3 4 5 6 7 8 9 10 11 1: 0 2: 1 3: 1 2 4: 1 3 5: 1 3 2 4 6: 1 5 7: 1 4 5 2 3 6 8: 1 3 5 7 9: 1 5 7 2 4 8 10: 1 7 3 9 11: 1 6 4 3 9 2 8 7 5 10 12: 1 5 7 11 13: 1 7 9 10 8 11 2 5 3 4 6 12 14: 1 5 3 11 9 13 15: 1 8 4 13 2 11 7 14 16: 1 11 13 7 9 3 5 15 ... n = 17: 1 9 6 13 7 3 5 15 2 12 14 10 4 11 8 16, n = 18: 1 11 13 5 7 17, n = 19: 1 10 13 5 4 16 11 12 17 2 7 8 3 15 14 6 9 18, n = 20: 1 7 3 9 11 17 13 19. ... reformatted (extended and corrected), - _Wolfdieter Lang_, Oct 06 2016
Links
- Robert Israel, Table of n, a(n) for n = 1..10060
- Eric Weisstein's World of Mathematics, Modular Inverse
Programs
-
Maple
0,seq(seq(i^(-1) mod m, i = select(t->igcd(t,m)=1, [$1..m-1])),m=1..100); # Robert Israel, May 18 2014
-
Mathematica
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &]; PowerMod[a, -1, nn], {n, 1, 20}] // Grid (* Geoffrey Critzer, Jan 03 2015 *)
Comments